Reference: Nishizawa M, et al. (2004) Yeast Pho85 kinase is required for proper gene expression during the diauxic shift. Yeast 21(11):903-18

Reference Help

Abstract


The budding yeast Saccharomyces cerevisiae changes its gene expression profile when environmental nutritional conditions are changed. Protein kinases including cyclic AMP-dependent kinase, Snf1 and Tor kinases play important roles in this process. Pho85 kinase, a member of the yeast cyclin-dependent kinase family, is involved in the regulation of phosphate metabolism and reserve carbohydrates, and thus is implicated to function as a nutrient-sensing kinase. Upon depletion of glucose in the medium, yeast cells undergo a diauxic shift, accompanied by a carbon metabolic pathway shift, stimulation of mitochondrial function and downregulation of ribosome biogenesis and protein synthesis. We analysed the effect of a pho85Delta mutation on the expression profiles of the genes in this process to investigate whether Pho85 kinase participates in the yeast diauxy. We found that, in the absence of PHO85, a majority of mitochondrial genes were not properly induced, that proteasome-related and chaperonin genes were more repressed, and that, when glucose was still present in the medium, a certain class of genes involved in ribosome biogenesis (ribosomal protein and rRNA processing genes) was repressed, whereas those involved in gluconeogenesis and the glyoxylate cycle were induced. We also found that PHO85 is required for proper expression of several metal sensor genes and their regulatory genes. These results suggest that Pho85 is required for proper onset of changes in expression profiles of genes responsible for the diauxic shift.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Nishizawa M, Katou Y, Shirahige K, Toh-e A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference