Reference: Myers CL, et al. (2004) Accurate detection of aneuploidies in array CGH and gene expression microarray data. Bioinformatics 20(18):3533-43

Reference Help

Abstract


Motivation: Chromosomal copy number changes (aneuploidies) are common in cell populations that undergo multiple cell divisions including yeast strains, cell lines and tumor cells. Identification of aneuploidies is critical in evolutionary studies, where changes in copy number serve an adaptive purpose, as well as in cancer studies, where amplifications and deletions of chromosomal regions have been identified as a major pathogenetic mechanism. Aneuploidies can be studied on whole-genome level using array CGH (a microarray-based method that measures the DNA content), but their presence also affects gene expression. In gene expression microarray analysis, identification of copy number changes is especially important in preventing aberrant biological conclusions based on spurious gene expression correlation or masked phenotypes that arise due to aneuploidies. Previously suggested approaches for aneuploidy detection from microarray data mostly focus on array CGH, address only whole-chromosome or whole-arm copy number changes, and rely on thresholds or other heuristics, making them unsuitable for fully automated general application to gene expression datasets. There is a need for a general and robust method for identification of aneuploidies of any size from both array CGH and gene expression microarray data.

Results: We present ChARM (Chromosomal Aberration Region Miner), a robust and accurate expectation-maximization based method for identification of segmental aneuploidies (partial chromosome changes) from gene expression and array CGH microarray data. Systematic evaluation of the algorithm on synthetic and biological data shows that the method is robust to noise, aneuploidal segment size and P-value cutoff. Using our approach, we identify known chromosomal changes and predict novel potential segmental aneuploidies in commonly used yeast deletion strains and in breast cancer. ChARM can be routinely used to identify aneuploidies in array CGH datasets and to screen gene expression data for aneuploidies or array biases. Our methodology is sensitive enough to detect statistically significant and biologically relevant aneuploidies even when expression or DNA content changes are subtle as in mixed populations of cells.

Availability: Code available by request from the authors and on Web supplement at http://function.cs.princeton.edu/ChARM/

Reference Type
Comparative Study | Evaluation Study | Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Validation Study
Authors
Myers CL, Dunham MJ, Kung SY, Troyanskaya OG
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference