Reference: Memon AR (2004) The role of ADP-ribosylation factor and SAR1 in vesicular trafficking in plants. Biochim Biophys Acta 1664(1):9-30

Reference Help

Abstract


Ras-like small GTP binding proteins regulate a wide variety of intracellular signalling and vesicular trafficking pathways in eukaryotic cells including plant cells. They share a common structure that operates as a molecular switch by cycling between active GTP-bound and inactive GDP-bound conformational states. The active GTP-bound state is regulated by guanine nucleotide exchange factors (GEF), which promote the exchange of GDP for GTP. The inactive GDP-bound state is promoted by GTPase-activating proteins (GAPs) which accelerate GTP hydrolysis by orders of magnitude. Two types of small GTP-binding proteins, ADP-ribosylation factor (Arf) and secretion-associated and Ras-related (Sar), are major regulators of vesicle biogenesis in intracellular traffic and are founding members of a growing family that also includes Arf-related proteins (Arp) and Arf-like (Arl) proteins. The most widely involved small GTPase in vesicular trafficking is probably Arf1, which not only controls assembly of COPI- and AP1, AP3, and AP4/clathrin-coated vesicles but also recruits other proteins to membranes, including some that may be components of further coats. Recent molecular, structural and biochemical studies have provided a wealth of detail of the interactions between Arf and the proteins that regulate its activity as well as providing clues for the types of effector molecules which are controlled by Arf. Sar1 functions as a molecular switch to control the assembly of protein coats (COPII) that direct vesicle budding from ER. The crystallographic analysis of Sar1 reveals a number of structurally unique features that dictate its function in COPII vesicle formation. In this review, I will summarize the current knowledge of Arf and Sar regulation in vesicular trafficking in mammalian and yeast cells and will highlight recent advances in identifying the elements involved in vesicle formation in plant cells. Additionally, I will briefly discuss the similarities and dissimilarities of vesicle traffic in plant, mammalian and yeast cells.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Memon AR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference