Reference: Rozan L, et al. (2004) Plasticity of extended subsites facilitates divergent substrate recognition by Kex2 and furin. J Biol Chem 279(34):35656-63

Reference Help

Abstract


Yeast Kex2 and human furin are subtilisin-related proprotein convertases that function in the late secretory pathway and exhibit similar though distinguishable patterns of substrate recognition. Although both enzymes prefer Arg at P(1) and basic residues at P(2), the two differ in recognition of P(4) and P(6) residues. To probe P(4) and P(6) recognition by Kex2p, furin-like substitutions were made in the putative S(4) and S(6) subsites of Kex2. T252D and Q283E mutations were introduced to increase the preference for Arg at P(4) and P(6), respectively. Glu(255) was replaced with Ile to limit recognition of P(4) Arg. The effects of putative S(4) and S(6) mutations were determined by examining the cleavage by purified mutant enzymes of a series of fluorogenic substrates with systematic changes in P(4) and/or P(6). Whereas wild Kex2 exhibited little preference type for Arg at P(6), the T252D mutant and T252D/Q283E double mutant exhibited clear interactions with P(6) Arg. Moreover, the T252D and T252D/Q283E substitutions altered the influence of the P(6) residue on P(4) recognition. We infer that cross-talk between S(4) and S(6), not seen in furin, allows wild type and mutant forms of Kex2 to adapt their subsites for altered modes of recognition. This apparent plasticity may allow the subsites to rearrange their local environment to interact with different substrates in a productive manner. E255I-Kex2 exhibited significantly decreased recognition of P(4) Arg in a tetrapeptide substrate with Lys at P(1), although the general pattern of selectivity for aliphatic residues at P(4) remained unchanged.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Rozan L, Krysan DJ, Rockwell NC, Fuller RS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference