Reference: Cartwright CP, et al. (1992) Efficient secretion in yeast based on fragments from K1 killer preprotoxin. Yeast 8(4):261-72

Reference Help

Abstract


The alpha and beta components of the secreted K1 killer toxin of Saccharomyces cerevisiae are derived from residues 45-147 and 234-316, respectively, of the 316 residue preprotoxin (ppTox). The beta N-terminus is produced by Kex2 cleavage after Lys Arg233; when beta la (the mature sequence of beta-lactamase) is fused at this site and the fusion is expressed from the PGK promoter in pDT17, a multicopy plasmid, unexpectedly modest levels of beta la secretion resulted. Over-expression of Kex2 failed to increase beta la secretion while a kex2-null mutation reduced secretion by 98%. beta la secretion in a Kex+ strain was not enhanced by inactivation of the alpha toxin component or by deletion of most of its central hydrophobic segments. However SP-beta la, produced by deletion of ppTox residues 35-176, expressed 10-fold higher beta la activity and the precursor was now secreted with similar efficiency in a kex2-null strain. Fusions of beta la to ppTox at Ala34 or Ala46 also led to efficient secretion in both KEX2 and kex2-null strains. Since these beta la fusions differ only in segments well downstream of the signal peptide and all had similar transcript levels, the efficiency of beta la secretion is apparently determined by the efficiency with which these fusions are translocated to the Golgi compartment where Kex2 is active. Efficiency is high for the shorter fusions, but is 10% or less for the longer fusions; even this fraction is apparently diverted to the vacuole if not cleaved by Kex2. SP-beta la was the most efficient construct tested; secreted beta la reached 4% of total cell protein, modestly exceeding levels produced by fusion to the MF alpha 1-encoded prepro alpha-factor, suggesting potential for the production of foreign proteins in yeast.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Cartwright CP, Zhu YS, Tipper DJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference