Reference: Osley MA (2004) H2B ubiquitylation: the end is in sight. Biochim Biophys Acta 1677(1-3):74-8

Reference Help

Abstract


Historically, the first eukaryotic protein found to be modified by ubiquitin was H2A, originally isolated from HeLa cells in 1975 by Harrison Busch and coworkers as a histone-like, nonhistone chromosomal protein called A24. Ubiquitylated histones have subsequently been found in many eukaryotic species, and to date, the core histones H2A, H2B, H3, the linker histone H1, and the histone variant H2A.Z are known to carry this modification. Although first on the scene, it was only recently that studies on histone ubiquitylation have enjoyed a renaissance. Part of the reason for the relatively slow pace of research on this fascinating histone modification was the absence of a good genetic system with which to study its cellular roles. This changed in 2000, when histone H2B was found to be ubiquitylated in the budding yeast S. cerevisiae, an organism with a low histone gene copy number and highly tractable genetics. Another factor was the almost exclusive focus of research on the role of polyubiquitylation in protein turnover. Because histones are generally monoubiquitylated, a form of the modification that is not associated with protein degradation, the significance of this minimalist ubiquitin conjugation was not heavily pursued. But perhaps the key reason for the renewed interest in histone ubiquitylation was the unexpected discovery of the past year that ubiquitylated H2B plays an important role in the trans-histone methylation of histone H3, a modification with close ties to the regulation of gene expression. This review will highlight some of the recent findings on the regulation and cellular roles of H2B ubiquitylation in yeast.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Osley MA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference