Reference: Serrano R, et al. (2004) Copper and iron are the limiting factors for growth of the yeast Saccharomyces cerevisiae in an alkaline environment. J Biol Chem 279(19):19698-704

Reference Help

Abstract


Exposure of the yeast Saccharomyces cerevisiae to an alkaline environment represents a stress situation that negatively affects growth and results in an adaptive transcriptional response. We screened a collection of 4825 haploid deletion mutants for their ability to grow at mild alkaline pH, and we identified 118 genes, involved in numerous cellular functions, whose absence results in reduced growth. The list includes several key genes in copper and iron homeostasis, such as CCC2, RCS1, FET3, LYS7, and CTR1. In contrast, a screen of high-copy number plasmid libraries for clones able to increase tolerance to alkaline pH revealed only two genes: FET4 (encoding a low affinity transporter for copper, iron, and zinc) and CTR1 (encoding a high affinity copper transporter). The beneficial effect of overexpression of CTR1 requires a functional high affinity iron transport system, as it was abolished by deletion of FET3, a component of the high affinity transport system, or CCC2, which is required for assembly of the transport system. The growth-promoting effect of FET4 was not modified in these mutants. These results suggest that the observed tolerance to alkaline pH is because of improved iron uptake and indicate that both iron and copper are limiting factors for growth under alkaline pH conditions. Addition to the medium of micromolar concentrations of copper or iron ions drastically improved growth at high pH. Supplementation with iron improved somewhat the tolerance of a fet3 strain but was ineffective in a ctr1 mutant, suggesting the existence of additional copper-requiring functions important for tolerance to an alkaline environment.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Serrano R, Bernal D, Simón E, Ariño J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference