Reference: Smith JD, et al. (2004) Protein disulfide isomerase, but not binding protein, overexpression enhances secretion of a non-disulfide-bonded protein in yeast. Biotechnol Bioeng 85(3):340-50

Reference Help

Abstract


In eukaryotes, secretory proteins are folded and assembled in the endoplasmic reticulum (ER). Many heterologous proteins are retained in the ER due to suboptimal folding conditions. We previously reported that heterologous secretion of Pyrococcus furiosus beta-glucosidase in Saccharomyces cerevisiae resulted in the accumulation of a large fraction of inactive beta-glucosidase in the ER. In this work, we determine the effect of introducing additional genes of ER-resident yeast proteins, Kar2p (binding protein [BiP]) and protein disulfide isomerase (PDI), on relieving this bottleneck. Single-copy expression of BiP and PDI worked synergistically to improve secretion by reverse similar 60%. In an effort to optimize BiP and PDI interactions, we created a library of beta-glucosidase expression strains that incorporated four combinations of constitutively or inducibly-expressed BiP and PDI genes integrated to random gene copynumbers in the yeast chromosome. Approximately 15% of the transformants screened had secretion level improvements higher than that seen with single BiP/PDI gene overexpression, and the highest secreting strain had threefold higher beta-glucosidase levels than the control. Nineteen of the improved strains were re-examined for beta-glucosidase secretion as well as BiP and PDI levels. Within the improved transformants BiP and PDI levels ranged sevenfold and tenfold over the control, respectively. Interestingly, increasing BiP levels decreased beta-glucosidase secretion, whereas increasing PDI levels increased beta-glucosidase secretion. The action of PDI was unexpected because beta-glucosidase is not a disulfide-bonded protein. We suggest that PDI may be acting in a chaperone-like capacity or possibly creating mixed disulfides with the beta-glucosidase's lone cysteine residue during the folding and assembly process.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Smith JD, Tang BC, Robinson AS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference