Reference: Rudnick DA, et al. (1992) Studies of the catalytic activities and substrate specificities of Saccharomyces cerevisiae myristoyl-coenzyme A: protein N-myristoyltransferase deletion mutants and human/yeast Nmt chimeras in Escherichia coli and S. cerevisiae. J Biol Chem 267(33):23852-61

Reference Help

Abstract


Saccharomyces cerevisiae myristoyl-CoA:protein N-myristoyltransferase (Nmt1p) is an essential, 455-residue, monomeric enzyme. Amino- and carboxyl-terminal deletion mutants of Nmt1p were genetically engineered to determine the minimal domain necessary to maintain catalytic activity. Enzyme activity was assessed by (i) sequentially inducing Nmt1p or its mutant derivatives and one of two eukaryotic substrates for the wild type enzyme (S. cerevisiae Gpa1p and rat Go alpha) in Escherichia coli, a bacterium with no endogenous myristoyltransferase activity, and monitoring Nmt-dependent incorporation of exogenous [3H]myristate into the G protein alpha subunits or (ii) an in vitro enzyme assay using lysates prepared from bacteria producing wild type or mutant Nmts. The data indicate that the minimal catalytic domain of Nmt1p is located between Ile59-->Phe96 and Gly451-->Leu455. Analyses of the ability of mutant nmtps to rescue the lethal phenotype of an nmt1 null allele in a haploid strain of yeast grown on rich media, with or without blockade of cellular fatty acid synthetase, suggest that the amino-terminal 59 residues of Nmt1p may play an important noncatalytic role, functioning as a targeting signal so this cytosolic enzyme can access cellular myristoyl-CoA pools generated from activation of exogenous C14:0 by acyl-CoA synthetase(s). Moreover, there appear to be differences in the location or accessibility of myristoyl-CoA pools derived from fatty acid synthetase and acyl-CoA synthetases. The E. coli co-expression system was used to map structural elements that determine differences in the peptide substrate specificities of Nmt1p and the orthologous human Nmt. Rat Go alpha is a substrate for both enzymes, whereas human Gz alpha is a substrate only for human NMT. Studies of a series of chimeric enzymes composed of elements from the amino- or carboxyl-terminal portions of human and yeast Nmts indicate that (i) recognition/utilization of Gz alpha involves elements distributed from the amino-terminal half through the region defined by Leu352-->Lys410 of the 416 residue human enzyme and (ii) formation of a fully functional peptide binding site and a fully functional myristoyl-CoA binding site in either of these enzymes requires contributions from both their amino-terminal and carboxyl-terminal halves.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Rudnick DA, Johnson RL, Gordon JI
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference