Reference: Andrews BJ and Moore L (1992) Mutational analysis of a DNA sequence involved in linking gene expression to the cell cycle. Biochem Cell Biol 70(10-11):1073-80

Reference Help

Abstract


Entry of budding yeast cells into the mitotic cell cycle requires the activity of a conserved regulatory kinase encoded by the CDC28 gene. The kinase is thought to trigger entry into the cell cycle or START, through association with a number of regulatory subunits known as G1 cyclins. A number of genes whose transcription is dependent on CDC28 and thus linked to START are controlled by two transcription factors, SWI4 and SWI6. The genes controlled by SWI4 and SWI6 include two known G1 cyclins (CLN1 and CLN2), a putative new G1 cyclin (HCS26), and the HO gene whose product initiates cell type switching. SWI4 and SWI6 act through a repeated sequence element, SCB (SWI4,6-dependent cell cycle box), found 2-10 times in the upstream regulatory sequences of target genes. We have constructed a library of mutants in the SCB using doped oligonucleotide mutagenesis. All single base pair changes examined compromised the ability of the SCB to activate transcription in vivo. Analysis of the behaviour of the mutant SCBs in an in vitro DNA binding assay shows that the inability to activate transcription can be explained by reduced binding of SWI4 and SWI6 to the mutant SCBs. This analysis, together with a consideration of the SCBs found upstream of known SWI4,6-dependent genes, leads to the proposal of a revised consensus sequence for this important regulatory element.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Andrews BJ, Moore L
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference