Reference: Schliep A, et al. (2003) Using hidden Markov models to analyze gene expression time course data. Bioinformatics 19 Suppl 1:i255-63

Reference Help

Abstract


Motivation: Cellular processes cause changes over time. Observing and measuring those changes over time allows insights into the how and why of regulation. The experimental platform for doing the appropriate large-scale experiments to obtain time-courses of expression levels is provided by microarray technology. However, the proper way of analyzing the resulting time course data is still very much an issue under investigation. The inherent time dependencies in the data suggest that clustering techniques which reflect those dependencies yield improved performance.

Results: We propose to use Hidden Markov Models (HMMs) to account for the horizontal dependencies along the time axis in time course data and to cope with the prevalent errors and missing values. The HMMs are used within a model-based clustering framework. We are given a number of clusters, each represented by one Hidden Markov Model from a finite collection encompassing typical qualitative behavior. Then, our method finds in an iterative procedure cluster models and an assignment of data points to these models that maximizes the joint likelihood of clustering and models. Partially supervised learning--adding groups of labeled data to the initial collection of clusters--is supported. A graphical user interface allows querying an expression profile dataset for time course similar to a prototype graphically defined as a sequence of levels and durations. We also propose a heuristic approach to automate determination of the number of clusters. We evaluate the method on published yeast cell cycle and fibroblasts serum response datasets, and compare them, with favorable results, to the autoregressive curves method.

Reference Type
Comparative Study | Evaluation Study | Journal Article | Research Support, Non-U.S. Gov't | Validation Study
Authors
Schliep A, Schönhuth A, Steinhoff C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference