Reference: Shenton D and Grant CM (2003) Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 374(Pt 2):513-9

Reference Help

Abstract


The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H(2)O(2). In particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde-3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, the enzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Shenton D, Grant CM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference