Reference: Ruiz-Herrera J and San-Blas G (2003) Chitin synthesis as target for antifungal drugs. Curr Drug Targets Infect Disord 3(1):77-91

Reference Help

Abstract


Human mycoses have become a threat to health world-wide. Unfortunately there are only a limited number of antimycotic drugs in use. Promising targets for drugs specific against fungi are those affecting chitin synthesis. Chitin is absent in vertebrates, and is essential for fungal wall integrity. A thorough knowledge of the mechanism of chitin synthesis is required to design specific inhibitors. We review here our current understanding of the process, and the most promising drugs that inhibit it. Chitin is made by chitin synthases requiring specific microvesicles, the chitosomes, for intracellular transport. Fungi contain several chitin synthases, some of which may be essential at a certain stage. This phenomenon is important to take into account for drug design. The most widely studied chitin synthase inhibitors are polyoxins and nikkomycins that probably bind to the catalytic site of chitin synthases. These are not equally susceptible to the drugs. In Saccharomyces cerevisiae the order of sensitivity is: Chs3p>Chs1p>Chs2p. Main problems for their succesful use in vivo are: low permeability, and different susceptibility of fungal species, and variable responses in animal models. Chemical modifications have been proposed to make more potent derivatives. Other synthetic or natural compounds are also promising as possible inhibitors, but their properties are less well known. Rational drug design has proceeded only on the basis of existing inhibitors, because the structure of the active site of chitin synthase is unknown. Undoubtedly, determination of this, and the biosynthetic mechanism will reveal unexpected drug targets in the future.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Review
Authors
Ruiz-Herrera J, San-Blas G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference