Reference: Warringer J and Blomberg A (2003) Automated screening in environmental arrays allows analysis of quantitative phenotypic profiles in Saccharomyces cerevisiae. Yeast 20(1):53-67

Reference Help

Abstract


A methodology for large-scale automated phenotypic profiling utilizing quantitative changes in yeast growth has been tested and applied to the analysis of some commonly used laboratory strains. This yeast-adjusted methodology is based on microcultivation in 350 microl liquid medium, where growth is frequently optically recorded, followed by automated extraction of relevant variables from obtained growth curves. We report that cultivation at this micro-scale displayed overall growth features and protein expression pattern highly similar to growth in well aerated medium-scale (10 ml) culture. However, differences were also encountered, mainly relating to the respiratory potential and the production of stress-induced proteins. Quantitative phenotypic profiles for the laboratory yeast strains W303, FY1679 and CEN-PK.2 were screened for in environmental arrays, including 98 different conditions composed of low, medium and high concentrations of 33 growth inhibitors. We introduce the concepts phenotypic index(rate) and phenotypic index(stationary), which relate to changes in rate of growth and the stationary phase optical density increment, respectively, in a particular environment relative a reference strain. The laboratory strains presented selective phenotypic profiles in both phenotypic indexes and the two features appeared in many cases to be independent characteristics. We propose the utilization of this methodology in large-scale screening of the complete collection of yeast deletion mutants.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Warringer J, Blomberg A
Primary Lit For
Additional Lit For
Review For

Interaction Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Type Assay Annotation Action Modification Phenotype Source Reference

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence