Reference: Vallier LG, et al. (2002) The alpha-factor receptor C-terminus is important for mating projection formation and orientation in Saccharomyces cerevisiae. Cell Motil Cytoskeleton 53(4):251-66

Reference Help

Abstract


Successful mating of MATa Saccharomyces cerevisiae cells is dependent on Ste2p, the alpha-factor receptor. Besides receiving the pheromone signal and transducing it through the G-protein coupled MAP kinase pathway, Ste2p is active in the establishment and orientation of the mating projection. We investigated the role of the carboxyl terminus of the receptor in mating projection formation and orientation using a spatial gradient assay. Cells carrying the ste2-T326 mutation, truncating 105 of the 135 amino acids in the receptor tail including a motif necessary for its ligand-mediated internalization, display slow onset of projection formation, abnormal shmoo morphology, and reduced ability to orient the mating projection toward a pheromone source. This reduction was due to the increased loss of mating projection orientation in a pheromone gradient. Cells with a mutated endocytosis motif were defective in reorientation in a pheromone gradient. ste2-Delta296 cells, which carry a complete truncation of the Ste2p tail, exhibit a severe defect in projection formation, and those projections that do form are unable to orient in a pheromone gradient. These results suggest a complex role for the Ste2p carboxy-terminal tail in the formation, orientation, and directional adjustment of the mating projection, and that endocytosis of the receptor is important for this process. In addition, mutations in RSR1/BUD1 and SPA2, genes necessary for budding polarity, exhibited little or no defect in formation or orientation of mating projections. We conclude that mating projection orientation depends upon the carboxyl terminus of the pheromone receptor and not the directional machinery used in budding.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Vallier LG, Segall JE, Snyder M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference