Reference: Holz C, et al. (2002) A micro-scale process for high-throughput expression of cDNAs in the yeast Saccharomyces cerevisiae. Protein Expr Purif 25(3):372-8

Reference Help

Abstract


Methods have been developed aimed at applying at high-throughput technology for expression of cloned cDNAs in yeast. Yeast is a eukaryotic host, which produces soluble recombinant proteins and is capable of introducing post-translational modifications of protein. It is, thus, an appropriate expression system both for the routine expression of various cDNAs or protein domains and for the expression of proteins, which are not correctly expressed in Escherichia coli. Here, we describe a standard system in Saccharomyces cerevisiae, based on a vector for intracellular protein expression, where the gene products are fused to specific peptide sequences (tags). These epitope tags, the N-terminal His(6) tag and the C-terminal StrepII tag, allow subsequent immunological identification and purification of the gene products by a two-step affinity chromatography. This method of dual-tagged recombinant protein purification eliminates contamination by degraded protein products. A miniaturization of the procedures for cloning, expression, and detection was performed to allow all steps to be carried out in 96-well microtiter plates. The system is, thus, suitable for automation. We were able to analyze the simultaneous protein expression of a large number of cDNA clones due to the highly parallel approach of protein production and purification. The microtiter plate technology format was extended to quantitative analysis. An ELISA-based assay was developed that detects StrepII-tagged proteins. The application of this high-throughput expression system for protein production will be a useful tool for functional and structural analyses of novel genes, identified by the Human Genome Project and other large-scale sequencing projects.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Holz C, Hesse O, Bolotina N, Stahl U, Lang C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference