Reference: Rodrigo MJ, et al. (2002) Reverse genetic approaches in plants and yeast suggest a role for novel, evolutionarily conserved, selenoprotein-related genes in oxidative stress defense. Mol Genet Genomics 267(5):613-21

Reference Help

Abstract


Oxidation of methionine residues during periods of oxidative stress can lead to loss of protein function. Organisms have developed defense strategies to minimize such damage. The PilB protein, which is involved in pilus formation in the pathogen Neisseria gonorrhoeae, is composed of three functional protein domains (I-III) with putative roles in oxidative stress defense. These domains are evolutionarily conserved and homologs have been discovered in diverse prokaryotes and eukaryotes. Domain III shows similarities to selenoproteins which contain selenium instead of sulfur in a conserved cysteine residue. The substitution of selenium for sulfur alters the redox properties of such proteins. Knock-out mutants were used to elucidate the function of these novel selenoprotein-like domains in yeast and in Arabidopsis thaliana. We show that organisms with non-functional genes for selenoprotein-like polypeptides accumulate higher levels of oxidized methionine residues on exposure to oxidative stress. The behavior of the mutants suggests that these novel selenoprotein-like gene products are part of a ubiquitous detoxification system that interacts with other redox-related proteins such as the thioredoxin-related protein and methionine sulfoxide reductase which are encoded by domains I and II of PilB. These proteins may be encoded by one gene as in the case of several prokaryotes, or by separate genes as in the eukaryotes examined here.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rodrigo MJ, Moskovitz J, Salamini F, Bartels D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference