Reference: Callejo M, et al. (2002) The 14-3-3 protein homologues from Saccharomyces cerevisiae, Bmh1p and Bmh2p, have cruciform DNA-binding activity and associate in vivo with ARS307. J Biol Chem 277(41):38416-23

Reference Help

Abstract


We have previously shown that, in human cells, cruciform DNA-binding activity is due to 14-3-3 proteins (Todd, A., Cossons, N., Aitken, A., Price, G. B., and Zannis-Hadjopoulos, M. (1998) Biochemistry 37, 14317-14325). Here, wild-type and single- and double-knockout nuclear extracts from the 14-3-3 Saccharomyces cerevisiae homologues Bmh1p and Bmh2p were analyzed for similar cruciform-binding activities in relation to these proteins. The Bmh1p-Bmh2p heterodimer, present in the wild-type strain, bound efficiently to cruciform-containing DNA in a structure-specific manner because cruciform DNA efficiently competed with the formation of the complex, whereas linear DNA did not. In contrast, the band-shift ability of the Bmh1p-Bmh1p and Bmh2p-Bmh2p homodimers present in the bmh2(-) and bmh1(-) single-knockout cells, respectively, was reduced by approximately 93 and 82%, respectively. The 14-3-3 plant homologue GF14 was also able to bind to cruciform DNA, suggesting that cruciform-binding activity is a common feature of the family of 14-3-3 proteins across species. Bmh1p and Bmh2p were found to associate in vivo with the yeast autonomous replication sequence ARS307, as assayed by formaldehyde cross-linking, followed by immunoprecipitation with anti-Bmh1p/Bmh2p antibody and conventional PCR. In agreement with the finding of an association of Bmh1p and Bmh2p with ARS307, another immunoprecipitation experiment using 2D3, an anti-cruciform DNA monoclonal antibody, revealed the presence of cruciform-containing DNA in ARS307.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Callejo M, Alvarez D, Price GB, Zannis-Hadjopoulos M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference