Reference: Harrison PM and Gerstein M (2002) Studying genomes through the aeons: protein families, pseudogenes and proteome evolution. J Mol Biol 318(5):1155-74

Reference Help

Abstract


Protein families can be used to understand many aspects of genomes, both their "live" and their "dead" parts (i.e. genes and pseudogenes). Surveys of genomes have revealed that, in every organism, there are always a few large families and many small ones, with the overall distribution following a power-law. This commonality is equally true for both genes and pseudogenes, and exists despite the fact that the specific families that are enlarged differ greatly between organisms. Furthermore, because of family structure there is great redundancy in proteomes, a fact linked to the large number of dispensable genes for each organism and the small size of the minimal, indispensable sub-proteome. Pseudogenes in prokaryotes represent families that are in the process of being dispensed with. In particular, the genome sequences of certain pathogenic bacteria (Mycobacterium leprae, Yersinia pestis and Rickettsia prowazekii) show how an organism can undergo reductive evolution on a large scale (i.e. the dying out of families) as a result of niche change. There appears to be less pressure to delete pseudogenes in eukaryotes. These can be divided into two varieties, duplicated and processed, where the latter involves reverse transcription from an mRNA intermediate. We discuss these collectively in yeast, worm, fly, and human. The fly has few pseudogenes apparently because of its high rate of genomic DNA deletion. In the other three organisms, the distribution of pseudogenes on the chromosome and amongst different families is highly non-uniform. Pseudogenes tend not to occur in the middle of chromosome arms, and tend to be associated with lineage-specific (as opposed to highly conserved) families that have environmental-response functions. This may be because, rather than being dead, they may form a reservoir of diverse "extra parts" that can be resurrected to help an organism adapt to its surroundings. In yeast, there may be a novel mechanism involving the [PSI+] prion that potentially enables this resurrection. In worm, the pseudogenes tend to arise out of families (e.g. chemoreceptors) that are greatly expanded in it compared to the fly. The human genome stands out in having many processed pseudogenes. These have a character very different from those of the duplicated variety, to a large extent just representing random insertions. Thus, their occurrence tends to be roughly in proportion to the amount of mRNA for a particular protein and to reflect the extent of the intergenic sequences. Further information about pseudogenes is available at http://genecensus.org/pseudogene

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Harrison PM, Gerstein M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference