Reference: Van Dijck P, et al. (2002) Disruption of the Candida albicans TPS2 gene encoding trehalose-6-phosphate phosphatase decreases infectivity without affecting hypha formation. Infect Immun 70(4):1772-82

Reference Help

Abstract


Deletion of trehalose-6-phosphate phosphatase, encoded by TPS2, in Saccharomyces cerevisiae results in accumulation of trehalose-6-phosphate (Tre6P) instead of trehalose under stress conditions. Since trehalose is an important stress protectant and Tre6P accumulation is toxic, we have investigated whether Tre6P phosphatase could be a useful target for antifungals in Candida albicans. We have cloned the C. albicans TPS2 (CaTPS2) gene and constructed heterozygous and homozygous deletion strains. As in S. cerevisiae, complete inactivation of Tre6P phosphatase in C. albicans results in 50-fold hyperaccumulation of Tre6P, thermosensitivity, and rapid death of the cells after a few hours at 44 degrees C. As opposed to inactivation of Tre6P synthase by deletion of CaTPS1, deletion of CaTPS2 does not affect hypha formation on a solid glucose-containing medium. In spite of this, virulence of the homozygous deletion mutant is strongly reduced in a mouse model of systemic infection. The pathogenicity of the heterozygous deletion mutant is similar to that of the wild-type strain. CaTPS2 is a new example of a gene not required for growth under standard conditions but required for pathogenicity in a host. Our results suggest that Tre6P phosphatase may serve as a potential target for antifungal drugs. Neither Tre6P phosphatase nor its substrate is present in mammals, and assay of the enzymes is simple and easily automated for high-throughput screening.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Van Dijck P, De Rop L, Szlufcik K, Van Ael E, Thevelein JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference