Reference: Yamaki M, et al. (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6(12):1043-54

Reference Help

Abstract


Background: Although no potential homologues of multicellular apoptotic genes (e.g. Bax, Bak, Bcl-2, caspases and p53) have been identified in a unicellular eukaryote, previous reports contain several implications of the apoptotic behaviour of yeasts (i.e. Saccharomyces cerevisiae and Schizosaccharomyces pombe). Therefore, whether or not yeast undergoes apoptosis has been a topic of some debate. hCCG1, which is the largest subunit of TFIID and a histone acetyltransferase, appears to be involved in the regulation of apoptosis. The factor hCIA interacts with hCCG1 and functions as a histone chaperone in mammalian cells; its homologue in yeast is Asf1p/Cia1p. Therefore, we anticipated that a yeast mutant in Asf1p/Cia1p would be a valuable tool for studying apoptosis in yeast.

Results: We established a strain of S. cerevisiae lacking the histone chaperone ASF1/CIA1. This disruptant, asf1/cia1, arrested preferentially at the G2/M-phase and died. We systematically analysed the phenotype associated with the death of this mutant yeast and identified many changes, such as fragmentation of the nuclei, condensation and fragmentation of chromatin, reduction of the mitochondrial membrane-potential, dysfunction of the mitochondrial proton pump, and a discernible release of cytochrome c to cytoplasm that resembles those in apoptotic multicellular organisms. Other changes potentially associated with the death in our mutant included a reduction in the vacuolar membrane potential, dysfunction of the vacuolar proton pump, reduction of endocytosis, and the presence of many autophagic bodies. However, these mutant yeast cells also showed cellular enlargement, which is characteristic of necrosis.

Conclusions: Cell death in S. cerevisiae occurs with a phenotype that largely resembles apoptosis in multicellular organisms, but that has some features of necrosis. Therefore, we indicate that yeast undergoes a 'prototypal active cell death' that retains some characteristics of passive cell death (necrosis). In addition, we think that active cell death is ubiquitously the essential attribute of life. Although such an active cell death system in yeast remains open to confirmation, we speculate that deletion of the histone chaperone Asf1p/Cia1p inhibits the normal assembly/disassembly of nucleosomes in yeast and thereby initiates the active cell death system.

Reference Type
Comparative Study | Journal Article | Research Support, Non-U.S. Gov't
Authors
Yamaki M, Umehara T, Chimura T, Horikoshi M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference