Reference: Finch CE and Ruvkun G (2001) The genetics of aging. Annu Rev Genomics Hum Genet 2:435-62

Reference Help

Abstract


The genetic analysis of life span has only begun in mammals, invertebrates, such as Caenorhabditis elegans and Drosophila, and yeast. Even at this primitive stage of the genetic analysis of aging, the physiological observations that rate of metabolism is intimately tied to life span is supported. In many examples from mice to worms to flies to yeast, genetic variants that affect life span also modify metabolism. Insulin signaling regulates life span coordinately with reproduction, metabolism, and free radical protective gene regulation in C. elegans. This may be related to the findings that caloric restriction also regulates mammalian aging, perhaps via the modulation of insulin-like signaling pathways. The nervous system has been implicated as a key tissue where insulin-like signaling and free radical protective pathways regulate life span in C. elegans and Drosophila. Genes that determine the life span could act in neuroendocrine cells in diverse animals. The involvement of insulin-like hormones suggests that the plasticity in life spans evident in animal phylogeny may be due to variation in the timing of release of hormones that control vitality and mortality as well as variation in the response to those hormones. Pedigree analysis of human aging may reveal variations in the orthologs of the insulin pathway genes and coupled pathways that regulate invertebrate aging. Thus, genetic approaches may identify a set of circuits that was established in ancestral metazoans to regulate their longevity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Finch CE, Ruvkun G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference