Reference: Kraus E, et al. (2001) Break-induced replication: a review and an example in budding yeast. Proc Natl Acad Sci U S A 98(15):8255-62

Reference Help

Abstract


Break-induced replication (BIR) is a nonreciprocal recombination-dependent replication process that is an effective mechanism to repair a broken chromosome. We review key roles played by BIR in maintaining genome integrity, including restarting DNA replication at broken replication forks and maintaining telomeres in the absence of telomerase. Previous studies suggested that gene targeting does not occur by simple crossings-over between ends of the linearized transforming fragment and the target chromosome, but involves extensive new DNA synthesis resembling BIR. We examined gene targeting in Saccharomyces cerevisiae where only one end of the transformed DNA has homology to chromosomal sequences. Linearized, centromere-containing plasmid DNA with the 5' end of the LEU2 gene at one end was transformed into a strain in which the 5' end of LEU2 was replaced by ADE1, preventing simple homologous gene replacement to become Leu2(+). Ade1(+) Leu2(+) transformants were recovered in which the entire LEU2 gene and as much as 7 kb of additional sequences were found on the plasmid, joined by microhomologies characteristic of nonhomologous end-joining (NHEJ). In other experiments, cells were transformed with DNA fragments lacking an ARS and homologous to only 50 bp of ADE2 added to the ends of a URA3 gene. Autonomously replicating circles were recovered, containing URA3 and as much as 8 kb of ADE2-adjacent sequences, including a nearby ARS, copied from chromosomal DNA. Thus, the end of a linearized DNA fragment can initiate new DNA synthesis by BIR in which the newly synthesized DNA is displaced and subsequently forms circles by NHEJ.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Kraus E, Leung WY, Haber JE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference