Reference: Trautmann S, et al. (2001) Fission yeast Clp1p phosphatase regulates G2/M transition and coordination of cytokinesis with cell cycle progression. Curr Biol 11(12):931-40

Reference Help

Abstract


Background: In Saccharomyces cerevisiae the mitotic-exit network (MEN) functions in anaphase to promote the release of the Cdc14p phosphatase from the nucleolus. This release causes mitotic exit via inactivation of the cyclin-dependent kinase (Cdk). Cdc14p-like proteins are highly conserved; however, it is unclear if these proteins regulate mitotic exit as in S. cerevisiae. In Schizosaccharomyces pombe a signaling pathway homologous to the MEN and termed the septation initiation network (SIN) is required not for mitotic exit, but for initiation of cytokinesis and for a cytokinesis checkpoint that inhibits further cell cycle progression until cytokinesis is complete.

Results: We have identified the S. pombe Cdc14p homolog, Clp1p, and show that it is not required for mitotic exit but rather functions together with the SIN in coordinating cytokinesis with the nuclear-division cycle. As cells enter mitosis, Clp1p relocalizes from the nucleolus to the spindle and site of cell division. Clp1p exit from the nucleolus does not depend on the SIN, but the SIN is required for keeping Clp1p out of the nucleolus until completion of cytokinesis. Clp1p, in turn, may promote the activation of the SIN by antagonizing Cdk activity until cytokinesis is complete and thus ensuring that cytokinesis is completed prior to the initiation of the next cell cycle. In addition to its roles in anaphase, Clp1p regulates the G2/M transition since cells deleted for clp1 enter mitosis precociously and cells overexpressing Clp1p delay mitotic entry. Unlike Cdc14p, Clp1p appears to antagonize Cdk activity by preventing dephosphorylation of Cdc2p on tyrosine.

Conclusions: S. pombe Clp1p affects cell cycle progression in a markedly different manner than its S. cerevisiae homolog, Cdc14p. This finding raises the possibility that related phosphatases in animal cells will prove to have important roles in coordinating the onset of cytokinesis with the events of mitosis.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Trautmann S, Wolfe BA, Jorgensen P, Tyers M, Gould KL, McCollum D
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference