Reference: Rozovsky S, et al. (2001) Solution-state NMR investigations of triosephosphate isomerase active site loop motion: ligand release in relation to active site loop dynamics. J Mol Biol 310(1):271-80

Reference Help

Abstract


Product release is partially rate determining in the isomerization reaction catalyzed by Triosephosphate Isomerase, the conversion of dihydroxyacetone phosphate to D-glyceraldehyde 3-phosphate, probably because an active-site loop movement is necessary to free the product from confinement in the active-site. The timescale of the catalytic loop motion and of ligand release were studied using 19F and 31P solution-state NMR. A 5'-fluorotryptophan was incorporated in the loop N-terminal hinge as a reporter of loop motion timescale. Crystallographic studies confirmed that the structure of the fluorinated enzyme is indistinguishable from the wild-type; the fluorine accepts a hydrogen bond from water and not from a protein residue, with minimal perturbation to the flexible loop stability. Two distinct loop conformations were observed by 19F NMR. Both for unligated (empty) and ligated enzyme samples a single species was detected, but the chemical shifts of these two distinct species differed by 1.2 ppm. For samples in the presence of subsaturating amounts of a substrate analogue, glycerol 3-phosphate, both NMR peaks were present, with broadened lineshapes at 0 degrees C. In contrast, a single NMR peak representing a rapid average of the two species was observed at 30 degrees C. We conclude that the rate of loop motion is less than 1400 s(-1) at 0 degrees C and more than 1400 s(-1) at 30 degrees C. Ligand release was studied under similar sample conditions, using 31P NMR of the phosphate group of the substrate analogue. The rate of ligand release is less than 1000 s(-1) at 0 degrees C and more than 1000 s(-1) at 30 degrees C. Therefore, loop motion and product release are probably concerted and likely to represent a rate limiting step for chemistry.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Rozovsky S, Jogl G, Tong L, McDermott AE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference