Reference: Davies TG, et al. (2001) Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure 9(5):389-97

Reference Help

Abstract


Background: Cyclin-dependent kinase 2 (CDK2) is an important target for structure-based design of antitumor agents. Monomeric CDK2 is inactive. Activation requires rearrangements to key structural elements of the enzyme's active site, which accompany cyclin binding and phosphorylation. To assess the validity of using monomeric CDK2 as a model for the active kinase in structure-based drug design, we have solved the structure of the inhibitor indirubin-5-sulphonate (E226) complexed with phospho-CDK2-cyclin A and compared it with the structure of E226 bound to inactive, monomeric CDK2.

Results: Activation of monomeric CDK2 leads to a rotation of its N-terminal domain relative to the C-terminal lobe. The accompanying change in position of E226 follows that of the N-terminal domain, and its interactions with residues forming part of the adenine binding pocket are conserved. The environment of the ATP-ribose site, not explored by E226, is significantly different in the binary complex compared to the monomeric complex due to movement of the glycine loop. Conformational changes also result in subtle differences in hydrogen bonding and electrostatic interactions between E226's sulphonate and CDK2's phosphate binding site. Affinities calculated by LUDI for the interaction of E226 with active or inactive CDK2 differ by a factor of approximately ten.

Conclusions: The accuracy of monomeric CDK2 as an inhibitor design template is restricted to the adenine binding site. The general flexibility observed for the glycine loop and subtle changes to the phosphate binding site suggest a need to study interactions between inhibitors and active CDK2 in structure-based drug design programs.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference