Reference: Rogniaux H, et al. (2001) Mass spectrometry as a novel approach to probe cooperativity in multimeric enzymatic systems. Anal Biochem 291(1):48-61

Reference Help

Abstract


Investigating cooperativity in multimeric enzymes is of utmost interest to improve our understanding of the mechanism of enzymatic regulation. In the present article, we propose a novel approach based on mass spectrometry to probe cooperativity in the binding of a ligand to a multisubunit enzyme. This approach presents the selective advantage of giving a direct insight into all the subsequent ligation states that are formed in solution as the ligand is added to the enzyme. A quantitative interpretation of the electrospray ionization (ESI) mass spectra gives the relative abundance of all the distinct enzymatic species, which allows one to directly deduce the cooperativity of the system. The overall method is described for the addition of the oxidized cofactor nicotinamide adenine dinucleotide (NAD(+)) to a dimeric mutant of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase (GPDH). It is then applied to four tetrameric enzymes: sturgeon muscle GPDH, wild type and S48G mutant of GPDH from B. stearothermophilus, and alcohol dehydrogenase (ADH) from Bakers yeast. The results illustrate the possibilities offered by this new technique. First, mass spectrometry allows a control of the enzymes before the addition of NAD(+). Second, the cooperative behavior can be drawn from one single ESI mass spectrum, which makes the method highly attractive in terms of the amount of biological material required. Above all, the major benefit lies in the direct visualization of all the enzymatic species that are in equilibrium in solution. The direct measurement of cooperativity readily resolve the inconvenience of the classical approaches employed in this field, which all need to model the experimental data in order to get the cooperative behavior of the system.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Rogniaux H, Sanglier S, Strupat K, Azza S, Roitel O, Ball V, Tritsch D, Branlant G, Van Dorsselaer A
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference