Reference: Lawrence CW and Maher VM (2001) Mutagenesis in eukaryotes dependent on DNA polymerase zeta and Rev1p. Philos Trans R Soc Lond B Biol Sci 356(1405):41-6

Reference Help

Abstract


DNA polymerase zeta (Pol zeta) and Rev1p carry out translesion replication in budding yeast, Saccharomyces cerevisiae, and are jointly responsible for almost all base pair substitution and frameshift mutations induced by DNA damage in this organism. In addition, Pol zeta is responsible for the majority of spontaneous mutations in yeast and has been proposed as the enzyme responsible for somatic hypermutability. Pol zeta, a non-processive enzyme that lacks a 3' to 5' exonuclease proofreading activity, is composed of Rev3p, the catalytic subunit, and a second subunit encoded by REV7. In keeping with its role, extension by Pol zeta is relatively tolerant of abnormal DNA structure at the primer terminus and is much more capable of extension from terminal mismatches than yeast DNA polymerase alpha (Pol alpha). Rev1p is a bifunctional enzyme that possesses a deoxycytidyl transferase activity that incorporates deoxycytidyl opposite abasic sites in the template and a second, at present poorly defined, activity that is required for the bypass of a variety of lesions as well as abasic sites. Human homologues of the yeast REV1 and REV3 have been identified and, based on the phenotype of cells producing antisense RNA to one or other of these genes, their products appear also to be employed in translation replication and spontaneous mutagenesis. We suggest that Pol zeta is best regarded as a replication enzyme, albeit one that is used only intermittently, that promotes extension at forks the progress of which is blocked for any reason, whether the presence of an unedited terminal mismatch or unrepaired DNA lesion.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S. | Review
Authors
Lawrence CW, Maher VM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference