Reference: Mittenhuber G (2001) Phylogenetic analyses and comparative genomics of vitamin B6 (pyridoxine) and pyridoxal phosphate biosynthesis pathways. J Mol Microbiol Biotechnol 3(1):1-20

Reference Help

Abstract


Vitamin B6 in its active form pyridoxal phosphate is an essential coenzyme of many diverse enzymes. Biochemistry, enzymology and genetics of de novo vitamin B6 biosynthesis have been primarily investigated in Escherichia coli. Database searches revealed that the key enzymes involved in ring closure of the aromatic pyridoxin ring (PdxA; PdxJ) are present mainly in genomes of bacteria constituting the gamma subdivision of proteobacteria. The distribution of DXS, a transketolase-like enzyme involved in vitamin B6 biosynthesis as well as in thiamine and isoprenoid biosynthesis and the distribution of vitamin B6 modifying enzymes (PdxH: oxidase; PdxK: kinase) was also analyzed. These enzymes are also present in the genomes of animals. Two recent papers (Ehrenshaft et al., 1999, Proc. Natl. Acad. Sci. USA. 96: 9374-9378; Osmani et al., 1999, J. Biol. Chem. 274: 23565-23569) show the involvement of an extremely conserved protein (a member of the UPF0019 or SNZ family) found in all three domains of life (bacteria, archaea, eukarya) in an alternative vitamin B6 biosynthesis pathway. Members of this family were previously identified as a stationary phase inducible protein in yeast, as an ethylene responsible protein in plants and in a marine sponge, as a singlet oxygen resistance protein in Cercospora nicotianae and as a cumene hydroperoxide and H2O2 inducible protein in Bacillus subtilis. In yeast, the SNZ protein interacts with another protein called SNO which also represents a member of a highly conserved protein family (called UPF0030 or SNO family). Phylogenetic trees for the DXS, PdxA, PdxJ, PdxH, PdxK, SNZ and SNO protein families are presented and possible implications of the two different vitamin B6 biosynthesis pathways in cellular metabolism are discussed. A radically different view of bacterial evolution (Gupta, 2000, Crit. Rev. Microbiol. 26: 111-131) which proposes a linear rather than a treelike evolutionary relationship between procaryotic species indicates that the gamma subdivision of proteobacteria represents the most recently evolved bacterial lineage. This proposal might help to explain why the PdxA/PdxJ pathway is largely restricted to this subdivision.

Reference Type
Journal Article | Review
Authors
Mittenhuber G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference