Reference: Salomon AR, et al. (2001) Apoptolidin, a selective cytotoxic agent, is an inhibitor of F0F1-ATPase. Chem Biol 8(1):71-80

Reference Help

Abstract


Background: Apoptolidin is a macrolide originally identified on the basis of its ability to selectively kill E1A and E1A/E1B19K transformed rat glial cells while not killing untransformed glial cells. The goal of this study was to identify the molecular target of this newly discovered natural product.

Results: Our approach to uncovering the mechanism of action of apoptolidin utilized a combination of molecular and cell-based pharmacological assays as well as structural comparisons between apoptolidin and other macrocyclic polyketides with known mechanism of action. Cell killing induced by apoptolidin was independent of p53 status, inhibited by BCL-2, and dependent on the action of caspase-9. PARP was completely cleaved in the presence of 1 microM apoptolidin within 6 h in a mouse lymphoma cell line. Together these results suggested that apoptolidin might target a mitochondrial protein. Structural comparisons between apoptolidin and other macrolides revealed significant similarity between the apoptolidin aglycone and oligomycin, a known inhibitor of mitochondrial F0F1-ATP synthase. The relevance of this similarity was established by demonstrating that apoptolidin is a potent inhibitor of the F0F1-ATPase activity in intact yeast mitochondria as well as Triton X-100-solubilized ATPase preparations. The K(i) for apoptolidin was 4-5 microM. The selectivity of apoptolidin in the NCI-60 cell line panel was found to correlate well with that of several known anti-fungal natural products that inhibit the eukaryotic mitochondrial F0F1-ATP synthase.

Significance: Although the anti-fungal activities of macrolide inhibitors of the mitochondrial F0F1-ATP synthase such as oligomycin, ossamycin and cytovaricin are well-documented, their unusual selectivity toward certain cell types is not widely appreciated. The recent discovery of apoptolidin, followed by the demonstration that it is an inhibitor of the mitochondrial F0F1-ATP synthase, highlights the potential relevance of these natural products as small molecules to modulate apoptotic pathways. The mechanistic basis for selective cytotoxicity of mitochondrial ATP synthase inhibitors is discussed.

Reference Type
Comparative Study | Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Salomon AR, Voehringer DW, Herzenberg LA, Khosla C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference