Reference: Nissen TL, et al. (2001) Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool. Yeast 18(1):19-32

Reference Help

Abstract


The intracellular redox state of a cell is to a large extent defined by the concentration ratios of the two pyridine nucleotide systems NADH/NAD(+) and NADPH/NADP(+) and has a significant influence on product formation in microorganisms. The enzyme pyridine nucleotide transhydrogenase, which can catalyse transfer of reducing equivalents between the two nucleotide systems, occurs in several organisms, but not in yeasts. The purpose of this work was to analyse how metabolism during anaerobic growth of Saccharomyces cerevisiae might be altered when transfer of reducing equivalents between the two systems is made possible by expression of a cytoplasmic transhydrogenase from Azotobacter vinelandii. We therefore cloned sth, encoding this enzyme, and expressed it under the control of a S. cerevisiae promoter in a strain derived from the industrial model strain S. cerevisiae CBS8066. Anaerobic batch cultivations in high-performance bioreactors were carried out in order to allow quantitative analysis of the effect of transhydrogenase expression on product formation and on the intracellular concentrations of NADH, NAD(+), NADPH and NADP(+). A specific transhydrogenase activity of 4.53 U/mg protein was measured in the extracts from the strain expressing the sth gene from A. vinelandii, while no transhydrogenase activity could be detected in control strains without the gene. Production of the transhydrogenase caused a significant increase in formation of glycerol and 2-oxoglutarate. Since NADPH is used to convert 2-oxoglutarate to glutamate while glycerol formation increases when excess NADH is formed, this suggested that transhydrogenase converted NADH and NADP(+) to NAD(+) and NADPH. This was further supported by measurements of the intracellular nucleotide concentrations. Thus, the (NADPH/NADP(+)):(NADH/NAD(+)) ratio was reduced from 35 to 17 by the transhydrogenase. The increased formation of 2-oxoglutarate was accompanied by a two-fold decrease in the maximal specific growth rate. Also the biomass and ethanol yields were significantly lowered by the transhydrogenase.

Reference Type
Journal Article
Authors
Nissen TL, Anderlund M, Nielsen J, Villadsen J, Kielland-Brandt MC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference