Reference: Hassett R, et al. (2000) The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351 Pt 2(Pt 2):477-84

Reference Help

Abstract


The plasma-membrane of Saccharomyces cerevisiae contains high affinity permeases for Cu(I) and Fe(II). A low affinity Fe(II) permease has also been identified, designated Fet4p. A corresponding low affinity copper permease has not been characterized, although yeast cells that lack high affinity copper uptake do accumulate this metal ion. We demonstrate in the present study that Fet4p can function as a low affinity copper permease. Copper is a non-competitive inhibitor of (55)Fe uptake through Fet4p (K(i)=22 microM). Fet4p-dependent (67)Cu uptake was kinetically characterized, with K(m) and V(max) values of 35 microM and 8 pmol of copper/min per 10(6) cells respectively. A fet4-containing strain exhibited no saturable, low affinity copper uptake indicating that this uptake was attributable to Fet4p. Mutant forms of Fet4p that exhibited decreased efficiency in (55/59)Fe uptake were similarly compromised in (67)Cu uptake, indicating that similar amino acid residues in Fet4p contribute to both uptake processes. The copper taken into the cell by Fet4p was metabolized similarly to the copper taken into the cell by the high affinity permease, Ctr1p. This was shown by the Fet4p-dependence of copper activation of Fet3p, the copper oxidase that supports high affinity iron uptake in yeast. Also, copper-transported by Fet4p down-regulated the copper sensitive transcription factor, Mac1p. Whether supplied by Ctr1p or by Fet4p, an intracellular copper concentration of approx. 10 microM caused a 50% reduction in the transcriptional activity of Mac1p. The data suggest that the initial trafficking of newly arrived copper in the yeast cell is independent of the copper uptake pathway involved, and that this copper may be targeted first to a presumably small 'holding' pool prior to its partitioning within the cell.

Reference Type
Journal Article | Research Support, U.S. Gov't, Non-P.H.S. | Research Support, U.S. Gov't, P.H.S.
Authors
Hassett R, Dix DR, Eide DJ, Kosman DJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference