Reference: Benoist P, et al. (2000) The yeast Ura2 protein that catalyses the first two steps of pyrimidines biosynthesis accumulates not in the nucleus but in the cytoplasm, as shown by immunocytochemistry and Ura2-green fluorescent protein mapping. Yeast 16(14):1299-312

Reference Help

Abstract


The Ura2 multidomain protein catalyses the first two steps of pyrimidines biosynthesis in Saccharomyces cerevisiae. It consists of a 240 kDa polypeptide which contains carbamyl phosphate synthetase and aspartate transcarbamylase domains. The Ura2 protein was believed to be nucleoplasmic, since one of the aspartate transcarbamylase reaction products, monophosphate, was reported to be precipitated by lead ions inside nuclei. However, this ultracytochemical approach was recently shown to give artifactual lead polyphosphate precipitates, and the use of cerium instead of lead failed to reveal this nucleoplasmic localization. Ura2 localization has therefore been undertaken by means of three alternative approaches based on the detection of the protein itself: (a) indirect immunofluorescence of yeast protoplasts; (b) immunogold labelling of ultrathin sections of embedded yeast cells (both approaches using affinity purified primary antibodies directed against the 240 kDa Ura2 polypeptide chain, or against a 22 residue peptide specific of the carbamyl phosphate synthetase domain); and (c) direct fluorescence of cells expressing an Ura2-green fluorescent protein hybrid. All three approaches localize the bulk of Ura2 to the cytoplasm, whereas the signals associated with the nucleus, mitochondria or vacuoles are close to or at the background level.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Benoist P, Feau P, Pliss A, Vorisek J, Antonelli R, Raska I, Denis-Duphil M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference