Reference: Holyoak CD, et al. (2000) Loss of Cmk1 Ca(2+)-calmodulin-dependent protein kinase in yeast results in constitutive weak organic acid resistance, associated with a post-transcriptional activation of the Pdr12 ATP-binding cassette transporter. Mol Microbiol 37(3):595-605

Reference Help

Abstract


Yeast cells display an adaptive stress response when exposed to weak organic acids at low pH. This adaptation is important in the spoilage of preserved foods, as it allows growth in the presence of weak acid food preservatives. In Saccharomyces cerevisiae, this stress response leads to strong induction of the Pdr12 ATP-binding cassette (ABC) transporter, which catalyses the active efflux of weak acid anions from the cytosol of adapted cells. S. cerevisiae cells lacking the Cmk1 isoform of Ca2+-calmodulin-dependent protein kinase are intrinsically resistant to weak acid stress, in that they do not need to spend a long adaptive period in lag phase before resuming growth after exposure to this stress. This resistance of the cmk1 mutant is Pdr12 dependent and, unlike with wild-type S. cerevisiae, cmk1 cells are capable of performing Pdr12-specific functions such as energy-dependent cellular extrusion of fluorescein and benzoate. However, they have neither higher PDR12 gene promoter activity nor higher Pdr12 protein levels. The increased Pdr12 activity in cmk1 cells is therefore caused by Cmk1 exerting a negative post-transcriptional influence over the activity of the Pdr12 ABC transporter, a transporter protein that is constitutively expressed in low-pH yeast cultures. This is the first preliminary evidence that shows a protein kinase, either directly or indirectly, regulating the activity of a yeast ABC transporter.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Holyoak CD, Thompson S, Ortiz Calderon C, Hatzixanthis K, Bauer B, Kuchler K, Piper PW, Coote PJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference