Reference: Lemaire C, et al. (2000) Absence of the mitochondrial AAA protease Yme1p restores F0-ATPase subunit accumulation in an oxa1 deletion mutant of Saccharomyces cerevisiae. J Biol Chem 275(31):23471-5

Reference Help

Abstract


The nuclear gene OXA1 encodes a protein located within the mitochondrial inner membrane that is required for the biogenesis of both cytochrome c oxidase (Cox) and ATPase. In the absence of Oxa1p, the translocation of the mitochondrially encoded subunit Cox2p to the intermembrane space (also referred to as export) is prevented, and it has been proposed that Oxa1p could be a component of a general mitochondrial export machinery. We have examined the role of Oxa1p in light of its relationships with two mitochondrial proteases, the matrix protease Afg3p-Rca1p and the intermembrane space protease Yme1p, by analyzing the assembly and activity of the Cox and ATPase complexes in Deltaoxa1, Deltaoxa1Deltaafg3, and Deltaoxa1Deltayme1 mutants. We show that membrane subunits of both complexes are specifically degraded in the absence of Oxa1p. Neither Afg3p nor Yme1p is responsible for the degradation of Cox subunits. However, the F(0) subunits Atp4p, Atp6p, and Atp17p are stabilized in the Deltaoxa1Deltayme1 double mutant, and oligomycin-sensitive ATPase activity is restored, showing that the increased stability of the ATPase subunits allows significant translocation and assembly to occur even in the absence of Oxa1p. These results suggest that Oxa1p is not essential for the export of ATPase subunits. In addition, although respiratory function is dispensable in Saccharomyces cerevisiae, we show that the simultaneous inactivation of AFG3 and YME1 is lethal and that the essential function does not reside in their protease activity.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Lemaire C, Hamel P, Velours J, Dujardin G
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference