Reference: Shelton VM, et al. (1999) Applicability of urea in the thermodynamic analysis of secondary and tertiary RNA folding. Biochemistry 38(51):16831-9

Reference Help

Abstract


The equilibrium folding of a series of self-complementary RNA duplexes and the unmodified yeast tRNA(Phe) is studied as a function of urea and Mg(2+) concentration with optical spectroscopies and chemical modification under isothermal conditions. Via application of standard methodologies from protein folding, the folding free energy and its dependence on urea concentration, the m value, are determined. The free energies of the RNA duplexes obtained from the urea titrations are in good agreement with those calculated from thermal melting studies [Freier, S. I., et al. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 9373]. The m value correlates with the length of the RNA duplex and is not sensitive to ionic conditions and temperature. The folding of the unmodified yeast tRNA(Phe) can be described by two Mg(2+)-dependent transitions, the second of which corresponds to the formation of the native tertiary structure as confirmed by hydroxyl radical protection and partial nuclease digestion. Both transitions are sensitive to urea and have m values of 0.94 and 1.70 kcal mol(-)(1) M(-)(1), respectively. Although the precise chemical basis of urea denaturation of RNA is uncertain, the m values for the duplexes and tRNA(Phe) are proportional to the amount of the surface area buried in the folding transition. This proportionality, 0.099 cal mol(-)(1) M(-)(1) A(-)(2), is very similar to that observed for proteins, 0.11 cal mol(-)(1) M(-)(1) A(-)(2) [Myers, J., Pace, N., and Scholtz, M. (1995) Protein Sci. 4, 2138]. These results indicate that urea titration can be used to measure both the free energy and the magnitude of an RNA folding transition.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Shelton VM, Sosnick TR, Pan T
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference