Reference: Gurvitz A, et al. (1999) Function of human mitochondrial 2,4-dienoyl-CoA reductase and rat monofunctional Delta3-Delta2-enoyl-CoA isomerase in beta-oxidation of unsaturated fatty acids. Biochem J 344 Pt 3(Pt 3):903-14

Reference Help

Abstract


Human 2,4-dienoyl-CoA reductase (2,4-reductase; DECR) and rat monofunctional Delta(3)-Delta(2)-enoyl-CoA isomerase (rat 3, 2-isomerase; ECI) are thought to be mitochondrial auxiliary enzymes involved in the beta-oxidation of unsaturated fatty acids. However, their function during this process has not been demonstrated. Although they lack obvious peroxisomal targeting signals (PTSs), both proteins have been suggested previously to also occur in the mammalian peroxisomal compartment. The putative function and peroxisomal location of the two mammalian proteins can be examined in yeast, since beta-oxidation of unsaturated fatty acids is a compartmentalized process in Saccharomyces cerevisiae requiring peroxisomal 2,4-dienoyl-CoA reductase (Sps19p) and peroxisomal 3, 2-isomerase (Eci1p). A yeast sps19Delta mutant expressing human 2, 4-reductase ending with the native C-terminus could not grow on petroselinic acid [cis-C(18:1(6))] medium but could grow when the protein was extended with a PTS tripeptide, SKL (Ser-Lys-Leu). We therefore reason that the human protein is a physiological 2, 4-reductase but that it is probably not peroxisomal. Rat 3, 2-isomerase expressed in a yeast eci1Delta strain was able to re-establish growth on oleic acid [cis-C(18:1(9))] medium irrespective of an SKL extension. Since we had shown that Delta(2,4) double bonds could not be metabolized extra-peroxisomally to restore growth of the sps19Delta strain, we postulate that rat 3,2-isomerase acted on the Delta(3) unsaturated metabolite of oleic acid by replacing the mutant's missing activity from within the peroxisomes. Immunoblotting of fractionated yeast cells expressing rat 3, 2-isomerase in combination with electron microscopy supported our proposal that the protein functioned in peroxisomes. The results presented here shed new light on the function and location of human mitochondrial 2,4-reductase and rat monofunctional 3,2-isomerase.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gurvitz A, Wabnegger L, Yagi AI, Binder M, Hartig A, Ruis H, Hamilton B, Dawes IW, Hiltunen JK, Rottensteiner H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference