Reference: Bothast RJ, et al. (1999) Fermentations with new recombinant organisms. Biotechnol Prog 15(5):867-75

Reference Help

Abstract


United States fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharoymces cerevisiae and Zymomonas mobilis for pentose utilization. We have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21-34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different "industrially hardened" strains may find separate applications in the fermentation of specific feedstocks.

Reference Type
Journal Article | Review
Authors
Bothast RJ, Nichols NN, Dien BS
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference