Reference: Götz R, et al. (1999) Deletion of the carbonic anhydrase-like gene NCE103 of the yeast Saccharomyces cerevisiae causes an oxygen-sensitive growth defect. Yeast 15(10A):855-64

Reference Help

Abstract


The yeast protein Nce103p encoded by the gene NCE103 (YNL036w) was described by Cleves et al. (1996) as a substrate of the non-classical export pathway which acts independently of the classical pathway through the ER and the Golgi compartments. However, the predicted amino acid sequence of Nce103p shows high levels of identities to carbonic anhydrases of pro- and eukaryotes. A nce103-Delta deletion strain did not grow on a rich peptone-yeast extract-glucose medium under normal aerobic conditions at pH values of 3.0-8.0, but grew like wild-type in an oxygen-free nitrogen or oxygen-reduced atmosphere over this pH range, and was more sensitive to H(2)O(2) than wild-type. No carbonic anhydrase activity could be detected in crude extracts prepared from wild-type, nce103-Delta mutants or in strains transformed with a multicopy plasmid carrying the NCE103 gene. Expression of the Medicago sativa carbonic anhydrase gene (Coba de la Peña et al., 1997), in a yeast expression cassette on a multicopy plasmid, complemented the growth defects caused by the nce103-Delta deletion and carbonic anhydrase activity could be readily detected in the crude extract. The ability of the nce103-Delta deletion strain to grow like wild-type under anaerobic conditions suggests that the protein encoded by NCE103 is required for protection against certain products of an oxidative metabolism and can be replaced in this function by the Medicago sativa carbonic anhydrase. A NCE103 promoter-LacZ fusion in a wild-type background showed that NCE103 is poorly transcribed under aerobic conditions and at an undetectable level under anaerobic conditions.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Götz R, Gnann A, Zimmermann FK
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference