Reference: Pérez JM, et al. (1999) The solution structure of the guanine nucleotide exchange domain of human elongation factor 1beta reveals a striking resemblance to that of EF-Ts from Escherichia coli. Structure 7(2):217-26

Reference Help

Abstract


Background: In eukaryotic protein synthesis, the multi-subunit elongation factor 1 (EF-1) plays an important role in ensuring the fidelity and regulating the rate of translation. EF-1alpha, which transports the aminoacyl tRNA to the ribosome, is a member of the G-protein superfamily. EF-1beta regulates the activity of EF-1alpha by catalyzing the exchange of GDP for GTP and thereby regenerating the active form of EF-1alpha. The structure of the bacterial analog of EF-1alpha, EF-Tu has been solved in complex with its GDP exchange factor, EF-Ts. These structures indicate a mechanism for GDP-GTP exchange in prokaryotes. Although there is good sequence conservation between EF-1alpha and EF-Tu, there is essentially no sequence similarity between EF-1beta and EF-Ts. We wished to explore whether the prokaryotic exchange mechanism could shed any light on the mechanism of eukaryotic translation elongation.

Results: Here, we report the structure of the guanine-nucleotide exchange factor (GEF) domain of human EF-1beta (hEF-1beta, residues 135-224); hEF-1beta[135-224], determined by nuclear magnetic resonance spectroscopy. Sequence conservation analysis of the GEF domains of EF-1 subunits beta and delta from widely divergent organisms indicates that the most highly conserved residues are in two loop regions. Intriguingly, hEF-1beta[135-224] shares structural homology with the GEF domain of EF-Ts despite their different primary sequences.

Conclusions: On the basis of both the structural homology between EF-Ts and hEF-1beta[135-224] and the sequence conservation analysis, we propose that the mechanism of guanine-nucleotide exchange in protein synthesis has been conserved in prokaryotes and eukaryotes. In particular, Tyr181 of hEF-1beta[135-224] appears to be analogous to Phe81 of Escherichia coli EF-Ts.

Reference Type
Journal Article
Authors
Pérez JM, Siegal G, Kriek J, Hård K, Dijk J, Canters GW, Möller W
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference