Reference: Choinowski T, et al. (1999) The crystal structure of lignin peroxidase at 1.70 A resolution reveals a hydroxy group on the cbeta of tryptophan 171: a novel radical site formed during the redox cycle. J Mol Biol 286(3):809-27

Reference Help

Abstract


The crystal structure of lignin peroxidase (LiP) from the white rot fungus Phanerochaete chrysosporium was refined to an R-factor of 16.2 % utilizing synchrotron data in the resolution range from 10 to 1.7 A. The final model comprises all 343 amino acid residues, 370 water molecules, the heme, four carbohydrates, and two calcium ions. Lignin peroxidase shows the typical peroxidase fold and the heme has a close environment as found in other peroxidases. During refinement of the LiP model an unprecedented modification of an amino acid was recognized. The surface residue tryptophan 171 in LiP is stereospecifically hydroxylated at the Cbeta atom due to an autocatalytic process. We propose that during the catalytic cycle of LiP a transient radical at Trp171 occurs that is different from those previously assumed for this type of peroxidase. Recently, the existence of a second substrate-binding site centered at Trp171 has been reported, by us which is different from the "classical heme edge" site found in other peroxidases. Here, we report evidence for a radical formation at Trp171 using spin trapping, which supports the concept of Trp171 being a redox active amino acid and being involved in the oxidation of veratryl alcohol. On the basis of our current model, an electron pathway from Trp171 to the heme is envisaged, relevant for the oxidation of veratryl alcohol and possibly lignin. Beside the opening leading to the heme edge, which can accommodate small aromatic substrate molecules, a smaller channel giving access to the distal heme pocket was identified that is large enough for molecules such as hydrogen peroxide. Furthermore, it was found that in LiP the bond between the heme iron and the Nepsilon2 atom of the proximal histidine residue is significantly longer than in cytochrome c peroxidase (CcP). The weaker Fe-N bond in LiP renders the heme more electron deficient and destabilizes high oxidation states, which could explain the higher redox potential of LiP as compared to CcP.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Choinowski T, Blodig W, Winterhalter KH, Piontek K
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, SPELL, or YeastMine.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference