GCN5/YGR252W Protein Information Help

Standard Name Gcn5p 1
Systematic Name Ygr252wp
Alias Ada4p , Swi9p 2 , Aas104p 3
ORF Classification Verified
Description Catalytic subunit of ADA and SAGA histone acetyltransferase complexes; acetyltransferase, modifies N-terminal lysines on histones H2B and H3; acetylates Rsc4p, a subunit of the RSC chromatin-remodeling complex, altering replication stress tolerance; relocalizes to the cytosol in response to hypoxia; mutant displays reduced transcription elongation in the G-less-based run-on (GLRO) assay; greater involvement in repression of RNAPII-dependent transcription than in activati (10, 4, 5, 6, 7, 8, 9)
Name Description General Control Nonderepressible 11
Gene Product KAT2 12
Experimental Data
Molecules/cell 1180 13
Predicted Sequence Formatted Sequence or sequence in FASTA format
Length (a.a.) 439
Molecular Weight (Da) 51,069
Isoelectric Point (pI) 6.63

Click on image for expanded interactive view
pbrowse

Post-translational Modifications PhosphoGRID | PhosphoPep Database
Domains/motifs See the graphical view and list of proteins that share domains/motifs in common with Gcn5p (InterPro)
Physical Interactions There are 520 total physical interactions (BioGRID)
Homologs PDB Homologs | BLASTP | BLASTP v. fungi | Fungal Alignment | Synteny Viewer
External Sequence Databases EBI: UPI0000053126 | Q03330
MIPS: YGR252W
NCBI: 11513447 | 1323458 | 1502355 | 3736 | 417038 | 51013881 | 5822444 | 6321691 | NP_011768.1 | NM_001181381.1
GenBank/EMBL/DDBJ: AAT93234.1 | CAA48602.1 | CAA67614.1 | CAA97281.1 | DAA08343.1 | AY693215 | X68628 | X99228 | Z73037
External Classifications EC: 2.3.1.48 [Histone acetyltransferase]
Amino Acid Sequence (or in FASTA format)
       1  MVTKHQIEED HLDGATTDPE VKRVKLENNV EEIQPEQAET NKQEGTDKEN
      51  KGKFEKETER IGGSEVVTDV EKGIVKFEFD GVEYTFKERP SVVEENEGKI
     101  EFRVVNNDNT KENMMVLTGL KNIFQKQLPK MPKEYIARLV YDRSHLSMAV
     151  IRKPLTVVGG ITYRPFDKRE FAEIVFCAIS STEQVRGYGA HLMNHLKDYV
     201  RNTSNIKYFL TYADNYAIGY FKKQGFTKEI TLDKSIWMGY IKDYEGGTLM
     251  QCSMLPRIRY LDAGKILLLQ EAALRRKIRT ISKSHIVRPG LEQFKDLNNI
     301  KPIDPMTIPG LKEAGWTPEM DALAQRPKRG PHDAAIQNIL TELQNHAAAW
     351  PFLQPVNKEE VPDYYDFIKE PMDLSTMEIK LESNKYQKME DFIYDARLVF
     401  NNCRMYNGEN TSYYKYANRL EKFFNNKVKE IPEYSHLID*           

external links for Gcn5p
Homologs Interaction Resources Protein databases/Other Localization Resources
BLASTP (NCBI) BioGRID SCOP Superfamily LoQate
Ashbya (AGD) BOND GPMdb (Mass Spec.) Organelle DB
Aspergillus (AspGD) CYC2008 (complexes) MIPS YPL+
Candida (CGD) Complexome Pfam domains YeastGFP
YGOB DIP YeastRC Structure Prediction (Seattle) YeastRC Public Image Repository
YOGY GeneMANIA


IMP

References cited on this page View Complete Literature Guide for Gcn5p
1) Georgakopoulos T and Thireos G  (1992) Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J 11(11):4145-52
2) Breeden L and Nasmyth K  (1987) Cell cycle control of the yeast HO gene: cis- and trans-acting regulators. Cell 48(3):389-97
3) Thireos G, et al.  (1984) 5' untranslated sequences are required for the translational control of a yeast regulatory gene. Proc Natl Acad Sci U S A 81(16):5096-100
4) Sterner DE and Berger SL  (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64(2):435-59
5) Langer MR, et al.  (2001) Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases. J Biol Chem 276(33):31321-31
6) VanDemark AP, et al.  (2007) Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell 27(5):817-28
7) Charles GM, et al.  (2011) Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci U S A 108(26):10620-5
8) Tous C, et al.  (2011) A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors. EMBO J 30(10):1953-64
9) Ghosh Dastidar R, et al.  (2012) The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci 2(1):30
10) Lanza AM, et al.  (2012) Linking yeast Gcn5p catalytic function and gene regulation using a quantitative, graded dominant mutant approach. PLoS One 7(4):e36193
11) Lucchini G, et al.  (1984) Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae. Mol Cell Biol 4(7):1326-33
12) Allis CD, et al.  (2007) New nomenclature for chromatin-modifying enzymes. Cell 131(4):633-6
13) Ghaemmaghami S, et al.  (2003) Global analysis of protein expression in yeast. Nature 425(6959):737-41