New & Noteworthy

Yeast-Human Functional Complementation Data Now in SGD

June 10, 2015


Yeast and humans diverged about a billion years ago. So if there’s still enough functional conservation between a pair of similar yeast and human genes that they can be substituted for each other, we know they must be critically important for life. An added bonus is that if a human protein works in yeast, all of the awesome power of yeast genetics and molecular biology can be used to study it.

To make it easier for researchers to identify these “swappable” yeast and human genes, we’ve started collecting functional complementation data in SGD. The data are all curated from the published literature, via two sources. One set of papers was curated at SGD, including the recent systematic study of functional complementation by Kachroo and colleagues.  Another set was curated by Princeton Protein Orthology Database (P-POD) staff and is incorporated into SGD with their generous permission.

As a starting point, we’ve collected a relatively simple set of data: the yeast and human genes involved in a functional complementation relationship, with their respective identifiers; the direction of complementation (human gene complements yeast mutation, or vice versa); the source of curation (SGD or P-POD); the PubMed ID of the reference; and an optional free-text note adding more details. In the future we’ll incorporate more information, such as the disease involvement of the human protein and the sequence differences found in disease-associated alleles that fail to complement the yeast mutation.

You can access these data in two ways: using two new templates in YeastMine, our data warehouse; or via our Download page. Please take a look, let us know what you think, and point us to any published data that’s missing. We always appreciate your feedback!

Using YeastMine to Access Functional Complementation Data

YeastMine is a versatile tool that lets you customize searches and create and manipulate lists of search results. To help you get started with YeastMine we’ve created a series of short video tutorials explaining its features.

Gene –> Functional Complementation template

This template lets you query with a yeast gene or list of genes (either your own custom list, or a pre-made gene list) and retrieve the human gene(s) involved in cross-species complementation along with all of the data listed above.

Human Gene –> Functional Complementation template

This template takes either human gene names (HGNC-approved symbols) or Entrez Gene IDs for human genes and returns the yeast gene(s) involved in cross-species complementation, along with the data listed above. You can run the query using a single human gene as input, or create a custom list of human genes in YeastMine for the query. We’ve created two new pre-made lists of human genes that can also be used with this template. The list “Human genes complementing or complemented by yeast genes” includes only human genes that are currently included in the functional complementation data, while the list “Human genes with yeast homologs” includes all human genes that have a yeast homolog as predicted by any of several methods.

Downloading Functional Complementation Data

If you’d prefer to have all the data in one file, simply visit our Curated Data download page and download the file “functional_complementation.tab”.

Yeast are People Too

June 3, 2015


Cars on the road today all look pretty similar from the outside, whether they’re gasoline-fueled or electric. On the inside, they’re fairly similar too. Even between the two kinds of car, you can probably get away with swapping parts like the air conditioner, the tires, or the seat belts. Although cars have changed over the years, these things haven’t changed all that much.

Just like these cars, yeast and human cells have some big differences under the hood but still share plenty of parts that are interchangeable. Nissan Leaf image via Wikimedia Commons; Ford Mustang image copyright Bill Nicholls via Creative Commons

The engine, though, is a different story. All the working parts of that Nissan Leaf engine have “evolved” together into a very different engine from the one in that Ford Mustang. They both have engines, but the parts aren’t really interchangeable any more.

We can think of yeast and human cells like this too. We’ve known for a while that we humans have quite a bit in common with our favorite little workhorse S. cerevisiae. But until now, no one had any idea how common it was for yeast-human pairs of similar-looking proteins to function so similarly that they are interchangeable between organisms.

In a study published last week in Science, Kachroo and colleagues looked at this question by systematically replacing a large set of essential yeast genes with their human orthologs. Amazingly, they found that almost half of the human proteins could keep the yeast mutants alive.

Also surprising was that the degree of similarity between the yeast and human proteins wasn’t always the most important factor in whether the proteins could be interchanged. Instead, membership in a gene module—a set of genes encoding proteins that act in a group, such as a complex or pathway—was an important predictor. 

The authors found that genes within a given module tended to be either mostly interchangeable or mostly not interchangeable, suggesting that if one protein changes during evolution, then the proteins with which it interacts may need to evolve as well. So we can trade air conditioner parts between the Leaf and the Mustang, but the Mustang’s spark plugs won’t do a thing in that newly evolved electric engine!

To begin their systematic survey, Kachroo and colleagues chose a set of 414 yeast genes that are essential for life and have a single human ortholog. They cloned the human cDNAs in plasmids for yeast expression, and transformed them into yeast that were mutant in the orthologous gene to see if the human gene would supply the missing yeast function.

They tested complementation using three different assays. In one, the human ortholog was transformed into a strain where expression of the yeast gene was under control of a tetracycline-repressible promoter. So if the human gene complemented the yeast mutation, it would be able to keep the yeast alive in the presence of tetracycline.

Another assay used temperature-sensitive mutants in the yeast genes and looked to see if the human orthologs could support yeast growth at the restrictive temperature. And the third assay tested whether a yeast haploid null mutant strain carrying the human gene could be recovered after sporulation of the heterozygous null diploid.

Remarkably, 176 human genes could keep the corresponding yeast mutant alive in at least one of these assays. A survey of the literature for additional examples brought the total to 199, or 47% of the tested set. After a billion years of separate evolution, yeast and humans still have hundreds of interchangeable parts!

That was the first big surprise. But the researchers didn’t stop there. They wondered what distinguished the genes that were interchangeable from those that weren’t. The simplest explanation would seem to be that the more similar the two proteins, the more likely they would work the same way. 

But biology is never so simple, is it? While it was true that human proteins with greater than 50% amino acid identity to yeast proteins were more likely to be able to replace their yeast equivalents, and that those with less than 20% amino acid identity were least likely to function in yeast, those in between did not follow the same rules. There was no correlation between similarity and interchangeability in ortholog pairs with 20-50% identity.  

After comparing 104 different types of quantitative data on each ortholog pair, including codon usage, gene expression levels, and so on, the authors found only one good predictor. If one yeast protein in a protein complex or pathway could be exchanged with its human ortholog, then usually most of the rest of the proteins in that complex or pathway could too.

This budding yeast-human drives home the point that humans and yeast share a lot in common: so much, that yeast continues (and will continue) to be the pre-eminent tool for understanding the fundamental biology of being human. Image courtesy of Stacia Engel

All of the genes that that make the proteins in these systems are said to be part of a gene module. Kachroo and colleagues found that most or all of the genes in a particular module were likely to be in the same class, either interchangeable or not. We can trade pretty much all of the parts between the radios of a Leaf and a Mustang, but none of the engine parts.

For example, none of the tested subunits of three different, conserved protein complexes (the TriC chaperone complex, origin recognition complex, and MCM complex) could complement the equivalent yeast mutations. But in contrast, 17 out of 19 tested genes in the sterol biosynthesis pathway were interchangeable.

Even within a single large complex, the proteasome, the subunits of one sub-complex, the alpha ring, were largely interchangeable while those of another sub-complex, the beta ring, were not. The researchers tested whether this trend was conserved across other species by testing complementation by proteasome subunit genes from Saccharomyces kluyveri, the nematode Caenorhabditis elegans, and the African clawed frog Xenopus laevis. Sure enough, alpha ring subunits from these organisms complemented the S. cerevisiae mutations, while beta ring subunits did not.

These results suggest that selection pressures operate similarly on all the genes in a module. And if proteins continue to interact across evolution, they can diverge widely in some regions while their interaction interfaces stay more conserved, so that orthologs from different species are more likely to be interchangeable.

The finding that interchangeability is so common has huge implications for research on human proteins. It’s now conceivable to “humanize” an entire pathway or complex, replacing the yeast genes with their human equivalents. And that means that all of the versatile tools of yeast genetics and molecular biology can be brought to bear on the human genes and proteins.

At SGD we’ve always known that yeast has a lot to say about human health and disease. With the growing body of work in these areas, we’re expanding our coverage of yeast-human orthology, cross-species functional complementation, and studies of human disease-associated genes in yeast. Watch this space as we announce new data in YeastMine, in download files, and on SGD web pages.

by Maria Costanzo, Ph.D., Senior Biocuration Scientist, SGD

How to Make A Safe and Fun Mitochondrion

January 13, 2015


Influencing mitochondrial import to treat disease:

Bounce houses are a great way for kids to burn off their excess energy. They can bounce off the floor and walls and scream to their hearts’ content.

It’s important to keep tabs on how many kids get into a bounce house, so that everyone has a good time. It’s even more important for yeast and human cells to keep tabs on mitochondrial import to ensure healthy ATP synthesis. Image via Flickr

Of course, adults need to keep an eye on how many kids are in the house at any one time, to keep things safe. And if one child starts to push and kick the others, it might be easier to restore calm if the adults are careful about how many kids, and which ones, they allow inside.

The yeast mitochondrion is actually a lot like a bounce house. It’s full of energy, and it has multiple gatekeepers—protein complexes in the mitochondrial membrane that imported proteins must pass through on their way in.

And, just like a bounce house, things can go very wrong inside the mitochondrion if its proteins don’t behave properly. The end result isn’t just an upset child with a black eye, either. Genetic diseases that affect mitochondrial function are among the most severe and the hardest to treat.

Now, described in a new paper in Nature CommunicationsAiyar and colleagues have used a yeast model of human mitochondrial disease to discover both a drug and a genetic means to regulate a mitochondrial import complex. Surprisingly, tweaking mitochondrial import slightly by either of these methods mitigated the disease symptoms in both yeast and human cells.  They found a gatekeeper who can make sure there is the right number of kids in the bounce house and that they’re all behaving properly (at least, as well as they can!).

The researchers were interested in mitochondrial disorders that affected ATP synthase. This huge molecular machine in the mitochondrial inner membrane is responsible for generating most of the cell’s energy, so if it doesn’t work properly it can be a disaster for both yeast and human cells.

Aiyar and coworkers used a genetic trick to create a yeast model that had lower amounts of functional ATP synthase. This mimics many mitochondrial disorders.

They were able to reduce the amount of functional ATP synthase by using an fmc1 null mutant. Fmc1p is involved in assembly of the complex, so the fmc1 null mutant has lower amounts of functional ATP synthase and a reduced respiration rate.

First, they looked for a drug that would mitigate the effects of the fmc1 mutation. They tested the drugs in a collection that had already been FDA approved—a drug repurposing library—to see if any would improve the mutant’s respiratory growth.

The one candidate drug that emerged from the screen was sodium pyrithione (NaPT), which is used as an antiseptic. Not only did it improve the respiration of the yeast fmc1 mutant, it also improved the respiratory growth of a human cell line carrying the atp6-T8993G mutation found in patients with neuropathy, ataxia and retinitis pigmentosa (NARP, one type of ATP synthase disorder).

Aiyar and colleagues wondered exactly what was being affected by the NaPT. To figure this out, they used the S. cerevisiae genome-wide heterozygous deletion mutant collection. This is a set of diploid strains, each heterozygous for a null mutation of a different gene, that has been an incredibly useful resource for all kinds of studies in yeast.

They tested the effect of NaPT on each of the mutant strains and found that strains with mutations in the TIM17 and TIM23 genes were among the most sensitive. And, when they checked the data from previous chemogenomic screens, they saw that these two mutants were much more sensitive to NaPT than to any other drug, showing that the effect was specific.

TIM17 and TIM23 are both subunits of the Tim23 complex in the mitochondrial inner membrane that acts as a gate for many of the proteins that end up in mitochondria. The researchers found that NaPT specifically inhibited the function of this mitochondrial gatekeeper complex in an in vitro mitochondrial import assay, confirming its selectivity.

So, Aiyar and coworkers had found a drug that alleviates the effects of an ATP synthase disorder by modulating the function of a mitochondrial gatekeeper. This in itself was a huge advance: the discovery that a potentially useful, already-approved drug has a specific effect on this disease phenotype.

However, the scientists took things a step further by looking to see whether a genetic therapy could accomplish the same thing as the drug.  It was already known that overexpressing Tim21p, a regulatory subunit of the Tim23 complex, could modulate the function of the complex similarly to the effects they had seen for NaPT.

So the researchers tested whether overexpressing Tim21p would improve respiratory growth of the fmc1 mutant. Sure enough, it did. Consistent with this, assembly of the respiratory enzyme complexes of the mitochondrial inner membrane was more efficient when Tim21p was overexpressed.

Most importantly, overexpression of Tim21p in the fmc1 mutant cells caused their total ATP synthesis to more than double.  And even more exciting was the discovery that overexpressing TIMM21, the human ortholog of TIM21, in the NARP disease human cell line improved survival of those cells.

So, just like a parent deciding how many kids should be in a bounce house so that everyone has a good time, the Tim23 complex can be made to “decide” which proteins, or perhaps how many proteins, get into mitochondria, with the end result that ATP synthesis happens as efficiently as possible. The exact mechanism of this effect is still unclear, but it is clear that modulating import in this way can improve mitochondrial health even when disease mutant proteins are present.

The next step will be to translate this discovery into therapies that will help mitochondrial disease patients. People with various mitochondrial disorders may finally be able to turn their mitochondria into safe, fun places.

by Maria Costanzo, Ph.D., Senior Biocurator, SGD

Yeast Genetics Makes Awesome Sauce

January 8, 2015


Just as many different combinations of ingredients can make a homemade tomato sauce, many different combinations of alleles can mitigate the effects of a devastating mutation. Image via Pixabay.com


What’s for dinner tonight? For many of us the answer will be “pasta with tomato sauce”, even if we don’t have Italian roots.

But as you know, there isn’t any single recipe for homemade tomato sauce. Onions and garlic, or just garlic? Pork, beef, or no meat at all? How many bay leaves go in the pot? Every cook will use a slightly different combination of ingredients, but all will end up with tomato sauce.

When it comes to combining different allele variants to survive a lethal challenge, yeast is a lot like those cooks. In a new paper in GENETICS, Sirr and colleagues used divergent yeast strains to generate a wide range of allelic backgrounds and found that there is more than one way to survive a deadly mutation in the GAL7 gene.  Just as there is more than one way to make a delicious tomato sauce…

This isn’t just an academic exercise either.  GAL7 is the ortholog of the human GALT gene, which when mutated leads to the disease galactosemia. And just like in yeast, people with different genetic backgrounds may do better or worse when both copies of their GALT gene are mutated.  

GAL7 and GALT encode an enzyme, galactose-1-phosphate uridyl transferase, that breaks down the sugar galactose. If people with this mutation eat galactose, the toxic compound galactose-1-phosphate accumulates; this can cause serious symptoms or even death. The same is often true for yeast with a mutated GAL7 gene.

Ideally we would want to be able to predict how severe the symptoms of galactosemia would be, based on a patient’s genetic background. So far, though, it’s been a challenge to identify comprehensively the whole set of genes that affect a given human phenotype. Which is why Sirr and colleagues turned to our friend S. cerevisiae to study alleles affecting the highly conserved galactose utilization pathway.

The researchers started with two very divergent yeast strains, one isolated from a canyon in Israel and the other from an oak tree in Pennsylvania. Both were able to utilize galactose normally, but the scientists made them “galactosemic” by knocking out the GAL7 gene in each.

After mating the strains to create a galactosemic diploid, the researchers needed to let the strain sporulate and isolate haploid progeny. But its sporulation efficiency wasn’t very good, only about 20%. And they needed to have millions of progeny to get a comprehensive look at genetic backgrounds.

To isolate a virtually pure population of haploid progeny, Sirr and coworkers came up with a neat trick. They added a green fluorescent protein gene to the strain and put it under control of a sporulation-specific promoter.

Cells that were undergoing sporulation would fluoresce and could be separated from the others by fluorescence-activated cell sorting (FACS). The FACS technique also allowed sorting by size, so they could select complete tetrads containing four haploid spores and discard incomplete products of meiosis such as dyads containing only two spores.

After using this step to isolate tetrads, the researchers broke them open to free the spores and put them on Petri dishes containing galactose—an amount that was enough to kill either of the parent strains. One in a thousand spores was able to survive the galactose toxicity. Recombination between the divergent alleles from the two parent strains somehow came up with the right combination of alleles for a survival sauce.

Sirr and colleagues individually genotyped 247 of the surviving progeny, using partial genome sequencing. They mapped QTLs (quantitative trait loci) to identify genomic regions associated with survival. If they found a particular allele in the survivors more often than would be expected by chance, that was a clue that a gene in that region had a role in survival.

We don’t have the space here to do justice to the details of the results, but we can summarize by saying that a whole variety of factors contributed to the galactose tolerance of the surviving progeny. They had three major QTLs, regions where multiple alleles were over- or under-represented. The QTLs were centered on genes involved in sugar metabolism: GAL3 and GAL80, both involved in transcriptional regulation of galactose utilization genes, and three hexose transporter genes (HXT3, HXT6, and HXT7) that are located very close to each other.

It makes sense that all of these genes could affect galactosemia. Gal3p and Gal80p are regulators of the pathway, so alleles of these genes that make galactose catabolism less active would result in less production of toxic intermediates. And although the hexose transporters don’t transport galactose as their preferred substrates, they may induce the pathway by allowing a little galactose into the cell. So less active alleles of these transporters would also result in less galactose catabolism.

Another event that occurred in over half of the surviving progeny was aneuploidy (altered chromosome number), most often an extra copy of chromosome XIII where the GAL80 gene is located. The same three QTL peaks were also seen in the disomic strains, though, leading the authors to conclude that the extra chromosome alone was not sufficient for survival of galactosemia.

And finally, some rare non-genetic events contributed to survival of the progeny. The authors discovered this when they found that the galactose tolerance of some of the progeny wasn’t stably inherited. This could result from differences in protein levels between individual cells. For example, if one cell happened to have lower levels of a galactose transporter than other cells, it might be more resistant to galactose.

The take-home message here is that there are many different ways to get to the same phenotype. The new method that they developed allowed the researchers to see rare combinations of alleles in large numbers of individual progeny, in contrast to other genotyping methods where progeny are pooled and only the average can be detected.

For any disease or trait the ultimate goal is to identify all the alleles of all the genes that influence it. Imagine the impact on human health, if we could look at a person’s genotype and accurately predict their phenotype!

So far, it’s been a challenge to identify these large sets of human genes in a comprehensive way. But this approach using yeast could provide a feast of data to help us understand monogenic diseases like galactosemia, cystic fibrosis, porphyria, and many more, and maybe even more complex traits and diseases. Now that’s an appetizing prospect for human disease researchers. Buon appetito!

by Maria Costanzo, Ph.D., Senior Biocurator, SGD

Next Page »