New & Noteworthy

When Running Out of Steam is a Good Thing

August 24, 2016


Bolt’s extra burst of speed helps him win gold medals, but the extra burst given to polymerase by Spt4p is not so helpful – it may contribute to various nucleotide repeat diseases. Image from Getty Images.

Usain Bolt sprinting is a thing of beauty. It is just amazing how he can kick in the afterburners at the end of a race and just dominate the thing. I am sure Justin Gatlin of the U.S. would love for Bolt to lose this extra burst of speed so Gatlin could beat him at the Olympics.

Turns out that transcription elongation has an afterburner a bit like Bolt’s too. It goes by the name SPT4 in yeast and SUPT4H1 in you and me. The protein from this gene is needed to push through long transcripts.

A new study in Science by Kramer and coworkers suggests that like Gatlin, some people would like to see their cells lose the burst of speed that SUPT4H1 gives their polymerases. But instead of helping these folks win a race, this loss might help them deal with their amyotrophic lateral sclerosis (ALS) or frontotemporal dementia (FTD).

ALS is a progressive neurodegenerative disease that is always fatal. It was first made famous by Lou Gehrig and later with the bucket challenge. After Alzheimer’s, FTD is the second most common form of dementia.

Back in 2011 two groups found that a significant number of cases of FTD and ALS were associated with a gene called C9orf72 (chromosome 9 open reading frame 72). These people had hundreds or even thousands of copies of the hexanucleotide repeat GGGGCC in the first intron of their gene instead of the 30 or so that is more typical.

Later studies showed that these repeats caused two very specific problems in cells. First, the RNA (and antisense RNA) from this allele tended to build up in small bundles called foci. Some researchers think that these foci trap some of the important RNA binding proteins that the cell needs.

The second phenotype is a strange one. These RNAs get translated by a process called repeat-associated non-ATG, or RAN, which causes a buildup of dipeptide repeat proteins. Apparently there is something about the secondary structure of the RNA that allows it to get translated without a typical AUG start codon.

The idea is that these foci and weird dipeptide proteins are at least part of the reason why these folks have their ALS symptoms. Ideally you’d want to get at all three issues (the sense and antisense RNA-laden foci, and those newly translated proteins) with a single approach.

Kramer and coworkers reasoned that they might get such a result if they could get the cell to make a whole lot less of SUPT4H1 (or Spt4p in yeast). They reasoned correctly.

Previous research had shown that its deletion didn’t affect too many genes except for those involved in diseases like Huntington’s – those with long CAG repeats. Perhaps, then, deleting it might also just affect the copies of the C9orf72 gene with those hexanucleotide repeats without affecting too many other genes.

When they forced yeast, nematode, fruit fly and human cells to make less Spt4p or SUPT4H1, the number of RNA foci went down or even disappeared in all of these different cells. There was also much less of those dipeptide repeat proteins lurking about the cell as well.

They first set out to do some experiments in everyone’s favorite workhorse, Saccharomyces cerevisiae. They found that expressing either the sense or antisense RNA with the 66 hexanucleotide repeats caused both the RNA foci and the dipeptide repeat proteins seen in the cells of ALS patients to form in yeast too. Neither happened with the sense or antisense 2 repeat constructs.

Next they showed that deleting SPT4 greatly reduced the level of 66 repeat RNA but had little effect on the 2 repeat RNA. These researchers also saw no RNA foci and much less dipeptide repeat proteins in the deletion strain expressing the 66 hexanucleotide repeats. All without much affecting any other genes.

This yeast work suggests that targeting SUPT4H1 might reduce the effects of the ALS version of the C9orf72 gene without affecting the more typical version. Now Kramer and coworkers were ready to see what happens in bigger beasts.

When they expressed the 66 repeat in Caenorhabditis elegans neurons, these nematodes lived for a shorter time and their neurons had RNA foci and the dipeptide repeat proteins. Expressing human SUPT4H1 in these worms’ neurons worsened their condition while feeding them RNAi against nematode SPT4 helped.

The RNAi let these worms live longer and it decreased the number of RNAi foci and the amount of dipeptide repeat proteins. They saw similar results with a Drosophila system.

Finally they moved to the main stage—human cells from ALS patients who had the C9orf72 protein with too many hexanucleotide repeats. RNAi against either SUPT4H1 or its partner in crime, SUPT5H, reduced the number of RNA foci and reduced the amount of dipeptide repeat proteins with no “overt toxicity.” RNA-seq showed that only a small subset of genes was affected with the RNAi treatment.

So it looks like targeting SUPT4H1 may be a good strategy for dealing with ALS if the RNA foci and dipeptide repeat proteins are a big part of the problem. This is a big if.

But if it all does work out, we can thank yeast yet again (#APOYG!) for showing us the way to a new treatment for a devastating disease. Of course, though, yeast can’t do everything. It is unlikely to show sprinters the best way to beat Usain Bolt in a race!

by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics

SGD: New Search, New Style

August 22, 2016


SGD is pleased to introduce our new faceted search, replete with new features that make navigating SGD easier than ever. It’s simple to get started – just click on the “Try this?” button on the SGD homepage. Try a search for your favorite gene or your favorite topic of study in our improved search box! We have also introduced a sleek new look that retains the same familiar features and menus, but is now optimized for mobile use.
 
New features of the search include:
  • Superior search box functionality: New autocomplete options connect to information faster than ever
  • Sorting options: Results sorted alphabetically, by relevance, and by number of annotations
  • Download gene lists: Export gene lists from search results into a text file with the “Wrapped” and “Download” options
  • Faceted searching: Narrow search results by using categories like Genes, Molecular Functions, Phenotypes, and more!
To get familiar with the new search, check out this quick help video to get started:
 

As you explore SGD’s new and improved search, please be sure to send us any feedback via email or through this short survey.
 

Coming Soon – New Search and New Styling

August 15, 2016


SGD is planning to release a new faceted search on Monday, August 22, 2016, along with some new site styling optimized for mobile use. The refactored search has been available for the last few months on our beta site: sgd-beta.stanford.edu.

New features of the search include:

  • an expanded selection of fields included in the autocomplete list
  • the ability to enter the SGD site and explore data and pages without an initial query – just click the Explore button and go!
  • narrowing of search results by categories such as genes, molecular functions, and phenotypes (and more!)

Navigating SGD will soon be easier than ever. Please explore the new search, try some different queries, view the new styling on your favorite pages, and send us your feedback via email, or through this short survey.

Friends with Benefits

August 10, 2016


GCN5 for yeast is a bit like a complete English breakfast for people from the US —nonessential. Image from Wikimedia Commons.

A 2013 poll identified the top 20 modern necessities British people couldn’t live without. Some we can all relate to like smartphones, daily showers, and the internet, while others are more British-specific like a cup of tea or a full English breakfast.

Of course none of these are true necessities like food, water or air. We wouldn’t be as happy, nor as competitive, without some of these modern necessities, but we’d obviously still be alive. (But is life without the Internet really living?)

It turns out that the GCN5 gene is more like water or air for most eukaryotes—they can’t live without it. But our old friend Saccharomyces cerevisiae is different. This yeast isn’t as happy without GCN5, but it soldiers on nonetheless.

This nonessentiality, combined with its powerful genetics, makes yeast a great system for exploring what GCN5 does. And this is just what Petty and coworkers did with this important member of the histone acetyltransferase (HAT) family in a new study in GENETICS.

GCN5, like other HATs, transfers an acetyl group to histones, which results in increased activity of nearby genes. Consistent with this, previous work has shown that GCN5 acetylates histone H3 in the promoters of active genes.

HATs, along with their countervailing proteins histone deacetylases, as well as kinases, phosphatases, methyltransferases and so on, all work together to change gene expression on the fly in response to all sorts of different stimuli. These can include environmental signals, entering the cell cycle, or whatever.

Understanding how HATs work is critical for understanding how we (and other beasts) change gene expression in response to these signals. Which is what makes GCN5 in yeast such a great system. A strain deleted for GCN5 is sick, but alive, so we can study what happens when it is gone. And we can explore what we can do to fix its problems.

One of the many problems that yeast lacking GCN5 have is that they grow more poorly at high temperature than do yeast with GCN5. These researchers took advantage of this and looked for high copy suppressors of this temperature sensitivity. They found multiple genes, but the most common was RTS1, one of two regulatory subunits of the PP2A phosphatase complex.

Deleting GCN5 causes more problems than temperature-sensitivity, and overexpressing RTS1 restored some, but not all, of them. For example, RTS1 overexpression helped make the Δgcn5 strain less sensitive to DNA damage, less susceptible to microtubule disruption, better able to grow on nonfermentable carbon sources like glycerol or ethanol, and more able to progress into S phase during mitosis. But lots of PP2ARts1 could not rescue the abnormal buds nor the sporulation problems seen in a diploid lacking GCN5.

When the researchers deleted RTS1 or some of the genes that code for other critical components of the PP2ARts1 complex in a Δgcn5 strain, the strain died. The same was not true of a second regulatory subunit that can be part of the PP2A complex, CDC55—its deletion was not lethal, nor did it rescue the temperature sensitivity of the Δgcn5 strain.

Petty and coworkers provided evidence that the phosphatase activity of the PP2ARts1 complex was important by showing that okadaic acid, an inhibitor of this family of phosphatases, prevented Rts1p from rescuing the Δgcn5 strain’s temperature sensitivity. The easiest explanation is that the rescue happens because of the phosphatase activity of PP2ARts1, but it is also possible that a different member of the family might be providing the phosphatase activity.

So it looks like there is something important happening between PP2A and GCN5. Petty and coworkers next set out to find out what that might be.

First they showed that deleting GCN5 causes a decrease in the levels of core histones in the cell and that RTS1 overexpression fixed this problem. This happened at the transcription level as the RNA levels of the yeast histone genes (with the exception of HTA1) all showed reduced expression in the absence of GCN5, which again was restored when RTS1 was overexpressed.

Histone genes are normally turned on at the end of G1, then shut off at the end of S phase. This makes sense, as a cell needs to make more histones when it makes a new copy of its genome and this happens during S phase!

find

What might be essential in one setting is not necessarily so in another. Image from Wikimedia Commons.

Consistent with the reduced histone gene expression seen earlier, the Δgcn5 strain failed to increase histone gene activity at the end of G1. Overexpressing RTS1 restored this induction. So it looks like GCN5 is involved in turning on all the histone genes, except maybe HTA1, at the right time, and that RTS1 can compensate if there is a lot of it around.

As a final set of experiments, the authors looked at what PP2ARts1 might be doing to rescue histone gene expression when GCN5 was deleted. They decided to look at histone modifications.

For this they used the SHIMA (Scanning HIstone Mutagenesis with Alanine) library, in which all key serine and threonine residues were individually mutagenized to alanine. Even though PP2ARts1 is thought to be primarily a serine/threonine phosphatase, they also looked at three tyrosine residues (Y40, Y43, and Y45) on H2B by mutating each individually to phenylalanine.

They found that two residues on histone H2B, Y40 and T91, were required for RTS1 to be able to rescue the temperature sensitivity of a Δgcn5 strain. And mimicking the permanent phosphorylation of T91, by mutating it to either aspartic or glutamic acid, slowed the growth of wild type yeast and killed the deletion strain.

This tells us a lot about what GCN5 is doing in yeast, and it might also help us better understand certain human cancers. Turns out that the residue equivalent to T91 in mammals is phosphorylated in these cancers.

Petty and coworkers were able to learn all of this because of yeast’s powerful genetic tools, and because GCN5 is not essential in yeast. Once again, the awesome power of yeast genetics (#APOYG!) can help us understand human cell biology.

by Barry Starr, Ph.D., Director of Outreach Activities, Stanford Genetics

« Previous Page
Next Page »